scholarly journals MicroRNA regulation of the MRN complex impacts DNA damage, cellular senescence and angiogenic signaling

2017 ◽  
Author(s):  
Cristina Espinosa-Diez ◽  
RaeAnna Wilson ◽  
Namita Chatterjee ◽  
Clayton Hudson ◽  
Rebecca Ruhl ◽  
...  

AbstractMicroRNAs contribute to biological robustness by buffering cellular processes from external perturbations. Here we report an unexpected link between DNA damage response and angiogenic signaling that is buffered by two distinct microRNAs. We demonstrate that genotoxic stress-induced miR-494 and miR-99b inhibit the DNA repair machinery by targeting the MRE11a-RAD50-NBN (MRN) complex. Functionally, gain and loss of function experiments show that miR-494 and miR-99b affect telomerase activity, activate p21 and Rb pathways and diminish angiogenic sproutingin vitroandin vivo. Genetic and pharmacological disruption of VEGFR-2 signaling and the MRN complex reveal a surprising co-dependency of these pathways in regulating endothelial senescence and proliferation. Vascular-targeted delivery of miR-494 decreases both growth factor-induced and tumor angiogenesis in mouse models. Mechanistically, disruption of the MRN complex induced CD44, a known driver of senescence and regulator of VEGF signaling in addition to suppressing IL-13 a stimulator of VEGF signaling. Our work identifies a putative miR-facilitated mechanism by which endothelial cells can be insulated against VEGF signaling to facilitate the onset of senescence and highlight the potential of targeting DNA repair to disrupt pathological angiogenesis.

Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2352-2366 ◽  
Author(s):  
Guo-zhong Yi ◽  
Guanglong Huang ◽  
Manlan Guo ◽  
Xi’an Zhang ◽  
Hai Wang ◽  
...  

Abstract The acquisition of temozolomide resistance is a major clinical challenge for glioblastoma treatment. Chemoresistance in glioblastoma is largely attributed to repair of temozolomide-induced DNA lesions by O6-methylguanine-DNA methyltransferase (MGMT). However, some MGMT-deficient glioblastomas are still resistant to temozolomide, and the underlying molecular mechanisms remain unclear. We found that DYNC2H1 (DHC2) was expressed more in MGMT-deficient recurrent glioblastoma specimens and its expression strongly correlated to poor progression-free survival in MGMT promotor methylated glioblastoma patients. Furthermore, silencing DHC2, both in vitro and in vivo, enhanced temozolomide-induced DNA damage and significantly improved the efficiency of temozolomide treatment in MGMT-deficient glioblastoma. Using a combination of subcellular proteomics and in vitro analyses, we showed that DHC2 was involved in nuclear localization of the DNA repair proteins, namely XPC and CBX5, and knockdown of either XPC or CBX5 resulted in increased temozolomide-induced DNA damage. In summary, we identified the nuclear transportation of DNA repair proteins by DHC2 as a critical regulator of acquired temozolomide resistance in MGMT-deficient glioblastoma. Our study offers novel insights for improving therapeutic management of MGMT-deficient glioblastoma.


1990 ◽  
Vol 8 (12) ◽  
pp. 2062-2084 ◽  
Author(s):  
R J Epstein

Cytotoxic drugs act principally by damaging tumor-cell DNA. Quantitative analysis of this interaction provides a basis for understanding the biology of therapeutic cell kill as well as a rational strategy for optimizing and predicting tumor response. Recent advances have made it possible to correlate assayed DNA lesions with cytotoxicity in tumor cell lines, in animal models, and in patients with malignant disease. In addition, many of the complex interrelationships between DNA damage, DNA repair, and alterations of gene expression in response to DNA damage have been defined. Techniques for modulating DNA damage and cytotoxicity using schedule-specific cytotoxic combinations, DNA repair inhibitors, cell-cycle manipulations, and adjunctive noncytotoxic drug therapy are being developed, and critical therapeutic targets have been identified within tumor-cell subpopulations and genomic DNA alike. Most importantly, methods for predicting clinical response to cytotoxic therapy using both in vitro markers of tumor-cell sensitivity and in vivo measurements of drug-induced DNA damage are now becoming a reality. These advances can be expected to provide a strong foundation for the development of innovative cytotoxic drug strategies over the next decade.


Gut ◽  
2019 ◽  
Vol 69 (4) ◽  
pp. 727-736 ◽  
Author(s):  
Cun Wang ◽  
Hui Wang ◽  
Cor Lieftink ◽  
Aimee du Chatinier ◽  
Dongmei Gao ◽  
...  

ObjectivesHepatocellular carcinoma (HCC) is one of the most frequent malignancies and a major leading cause of cancer-related deaths worldwide. Several therapeutic options like sorafenib and regorafenib provide only modest survival benefit to patients with HCC. This study aims to identify novel druggable candidate genes for patients with HCC.DesignA non-biased CRISPR (clustered regularly interspaced short palindromic repeats) loss-of-function genetic screen targeting all known human kinases was performed to identify vulnerabilities of HCC cells. Whole-transcriptome sequencing (RNA-Seq) and bioinformatics analyses were performed to explore the mechanisms of the action of a cyclin-dependent kinase 12 (CDK12) inhibitor in HCC cells. Multiple in vitro and in vivo assays were used to study the synergistic effects of the combination of CDK12 inhibition and sorafenib.ResultsWe identify CDK12 as critically required for most HCC cell lines. Suppression of CDK12 using short hairpin RNAs (shRNAs) or its inhibition by the covalent small molecule inhibitor THZ531 leads to robust proliferation inhibition. THZ531 preferentially suppresses the expression of DNA repair-related genes and induces strong DNA damage response in HCC cell lines. The combination of THZ531 and sorafenib shows striking synergy by inducing apoptosis or senescence in HCC cells. The synergy between THZ531 and sorafenib may derive from the notion that THZ531 impairs the adaptive responses of HCC cells induced by sorafenib treatment.ConclusionOur data highlight the potential of CDK12 as a drug target for patients with HCC. The striking synergy of THZ531 and sorafenib suggests a potential combination therapy for this difficult to treat cancer.


2003 ◽  
Vol 23 (4) ◽  
pp. 1441-1452 ◽  
Author(s):  
Vladimir I. Bashkirov ◽  
Elena V. Bashkirova ◽  
Edwin Haghnazari ◽  
Wolf-Dietrich Heyer

ABSTRACT The serine-threonine kinase Dun1 contains a forkhead-associated (FHA) domain and functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. It belongs to the Chk2 family of checkpoint kinases, which includes S. cerevisiae Rad53 and Mek1, Schizosaccharomyces pombe Cds1, and human Chk2. Dun1 is required for DNA damage-induced transcription of certain target genes, transient G2/M arrest after DNA damage, and DNA damage-induced phosphorylation of the DNA repair protein Rad55. Here we report that the FHA phosphoprotein recognition domain of Dun1 is required for direct phosphorylation of Dun1 by Rad53 kinase in vitro and in vivo. trans phosphorylation by Rad53 does not require the Dun1 kinase activity and is likely to involve only a transient interaction between the two kinases. The checkpoint functions of Dun1 kinase in DNA damage-induced transcription, G2/M cell cycle arrest, and Rad55 phosphorylation are severely compromised in an FHA domain mutant of Dun1. As a consequence, the Dun1 FHA domain mutant displays enhanced sensitivity to genotoxic stress induced by UV, methyl methanesulfonate, and the replication inhibitor hydroxyurea. We show that the Dun1 FHA domain is critical for direct kinase-to-kinase signaling from Rad53 to Dun1 in the DNA damage checkpoint pathway.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e14631-e14631
Author(s):  
T. Xu ◽  
Y. Xu ◽  
R. Lao ◽  
K. He ◽  
L. Xue ◽  
...  

e14631 Background: Telomerase-interference (TI), a novel therapeutic strategy, exploits the high telomerase activity in prostate cancer by introducing a mutated telomerase RNA (MT-Ter) that encodes toxic telomeres. Until now, TI has been tested by targeting human telomerase in tumor cells xenografted into immuno-deficient mice, an inadequate model for predicting efficacy and toxicity. We designed and validated 2 new TI gene constructs that specifically target murine telomerase RNA (mTER), enabling the study of TI in preclinical mouse models that are immuno-competent and that develop endogenous prostate tumors. Methods: We designed 2 constructs and cloned them into a lentiviral delivery system: MT-mTER and siRNA against wild type mTer (α-mTer-siRNA). Using a mouse prostate cancer cell line, E4, we tested the 2 constructs for expression (RT-PCR), telomerase activity (TRAP), and biologic activity (53bp1 DNA damage staining, MTS growth assay, TUNEL and caspase apoptosis assays), as well as in vivo efficacy (NOD-SCID allografts). Results: We confirmed MT-mTER expression (∼50-fold) and showed that α-mTer-siRNA specifically depleted WT-mTER (80% reduction) but not MT-mTER when the 2 constructs are co-expressed; thus, the 2 constructs in combination effectively substituted MT-mTer for WT-mTer in the mouse prostate cancer cells. MT-mTER caused mutant telomeric repeats (TTTGGG instead of TTAGGG) to be added to the ends of telomeres, resulting in rapid telomeric uncapping marked by 53bp1 DNA damage foci (an average 7.5 foci/cell vs. 1.4 foci/cell in vector control). This, in turn, led to rapid and significant apoptosis (>90% TUNEL and caspase +) and growth inhibition in vitro (90% reduction by MTS) and in vivo (75% reduction in tumor allograft size). Conclusions: We successfully designed and validated MT-mTer and α-mTer-siRNA, 2 novel gene constructs that specifically target and co-opt murine telomerase activity within mouse prostate cancer cells. These constructs offer a significant advantage, as they can be used to investigate TI in immuno-competent mice that develop prostate cancer, thereby modeling actual human disease and testing TI-based therapies in a much more informative and authentic manner. No significant financial relationships to disclose.


Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 5016-5026 ◽  
Author(s):  
Tsukasa Oda ◽  
Toshiya Hayano ◽  
Hidenobu Miyaso ◽  
Nobuhiro Takahashi ◽  
Takayuki Yamashita

Abstract Heat shock protein 90 (Hsp90) regulates diverse signaling pathways. Emerging evidence suggests that Hsp90 inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG), enhance DNA damage-induced cell death, suggesting that Hsp90 may regulate cellular responses to genotoxic stress. However, the underlying mechanisms are poorly understood. Here, we show that the Fanconi anemia (FA) pathway is involved in the Hsp90-mediated regulation of genotoxic stress response. In the FA pathway, assembly of 8 FA proteins including FANCA into a nuclear multiprotein complex, and the complex-dependent activation of FANCD2 are critical events for cellular tolerance against DNA cross-linkers. Hsp90 associates with FANCA, in vivo and in vitro, in a 17-AAG–sensitive manner. Disruption of the FANCA/Hsp90 association by cellular treatment with 17-AAG induces rapid proteasomal degradation and cytoplasmic relocalization of FANCA, leading to impaired activation of FANCD2. Furthermore, 17-AAG promotes DNA cross-linker–induced cytotoxicity, but this effect is much less pronounced in FA pathway-defective cells. Notably, 17-AAG enhances DNA cross-linker–induced chromosome aberrations. In conclusion, our results identify FANCA as a novel client of Hsp90, suggesting that Hsp90 promotes activation of the FA pathway through regulation of intracellular turnover and trafficking of FANCA, which is critical for cellular tolerance against genotoxic stress.


2019 ◽  
Author(s):  
Fang Zhang ◽  
Pengyi Yan ◽  
Huijing Yu ◽  
Huangying Le ◽  
Zixuan li ◽  
...  

SummaryAttenuated DNA repair leads to genomic instability and tumorigenesis. BRCA1/BARD1 are the best known tumor suppressors that promote homology recombination (HR) and arrest cell cycle at G2/M checkpoint. As E3 ubiquitin ligases, their ubiquitinase activity has been known to involve in the HR and tumor suppression, but the mechanism remains ambiguous. Here, we demonstrated upon genotoxic stress, BRCA1 together with BARD1 catalyzed the K48 ployubiquitination on LARP7, a 7SK RNA binding protein known to control RNAPII pausing, and thereby degraded it through 26S ubiquitin-proteasome pathway. Depleting LARP7 suppressed the expression of CDK1 complex, arrested cell at G2/M DNA damage checkpoint and reduced BRCA2 phosphorylation which thereby facilitated RAD51 recruitment to damaged DNA to enhance HR. Importantly, LARP7 depletion observed in breast patients lead to the chemoradiotherapy resistance both in vitro and in vivo. Together, this study unveils a mechanism by which BRCA1/BARD1 utilizes their E3 ligase activity to control HR and cell cycle, and highlights LARP7 as a potential target for cancer prevention and therapy.HighlightsDNA damage response downregulates LARP7 through BRCA1/BARD1BRCA1/BARD1 catalyzes the K48 polyubiquitination on LARP7LARP7 promotes G2/M cell cycle transition and tumorigenesis via CDK1 complexLARP7 disputes homology-directed repair that leads to tumor therapy resistance


2016 ◽  
Vol 113 (52) ◽  
pp. 15024-15029 ◽  
Author(s):  
Michael I. Carr ◽  
Justine E. Roderick ◽  
Hong Zhang ◽  
Bruce A. Woda ◽  
Michelle A. Kelliher ◽  
...  

The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2Y393F) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2Y393F/S394A mice and Mdm2S394A mice display similar phenotypes.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2190-2199 ◽  
Author(s):  
Ondrej Krejci ◽  
Mark Wunderlich ◽  
Hartmut Geiger ◽  
Fu-Sheng Chou ◽  
David Schleimer ◽  
...  

Chromosomal translocation (8;21) is present in 10% to 15% of patients with acute myeloid leukemia. Expression of the AML1-ETO (AE) fusion protein alone is not sufficient to induce leukemia, but the nature of the additional genetic alterations is unknown. It is unclear whether AE facilitates acquisition of these cooperating events. We show that AE down-regulates genes involved in multiple DNA repair pathways, potentially through a mechanism involving direct binding at promoter elements, and increases the mutation frequency in vivo. AE cells display increased DNA damage in vitro and have an activated p53 pathway. This results in increased basal apoptosis and enhanced sensitivity to DNA damaging agents. Intriguingly, microarray data indicate that t(8;21) patient samples exhibit decreased expression of DNA repair genes and increased expression of p53 response genes compared with other acute myeloid leukemia (AML) patient samples. Inhibition of the p53 pathway by RNAi increases the resistance of AE cells to DNA damage. We thus speculate that AML1-ETO may facilitate accumulation of genetic alterations by suppressing endogenous DNA repair. It is possible that the superior outcome of t(8;21) patients is partly due to an activated p53 pathway, and that loss of the p53 response pathway is associated with disease progression.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245166
Author(s):  
Al Shaimaa Hasan ◽  
Lan Luo ◽  
Satoko Baba ◽  
Tao-Sheng Li

Compared to the age-matched men, the incidence of cardiovascular diseases is lower in premenopausal but higher in postmenopausal women, suggesting the cardio-protective role of estrogen in females. Although cardiac stem cells (CSCs) express estrogen receptors, yet the effects of estrogen on CSCs remain unclear. In this study, we investigated the potential role of estrogen in maintaining the quality of CSCs by in vivo and in vitro experiments. For the in vivo study, estrogen deficiency was induced by ovariectomy in 6-weeks-old C57BL/6 female mice, and then randomly given 17β-estradiol (E2) replacements at a low dose (0.01 mg/60 days) and high dose (0.18 mg/60 days), or vehicle treatment. All mice were killed 2 months after treatments, and heart tissues were collected for ex vivo expansion of CSCs. Compared to age-matched healthy controls, estrogen deficiency slightly decreased the yield of CSCs with significantly lower telomerase activity and more DNA damage. Interestingly, E2 replacements at low and high doses significantly increased the yield of CSCs and reversed the quality impairment of CSCs following estrogen deficiency. For the in vitro study, twice-passaged CSCs from the hearts of adult healthy female mice were cultured with the supplement of 0.01, 0.1, and 1 μM E2 in the medium for 3 days. We found that E2 supplement increased c-kit expression, increased proliferative activity, improved telomerase activity, and reduced DNA damage of CSCs in a dose-dependent manner. Our data suggested the potential role of estrogen in maintaining the quality of CSCs, providing new insight into the cardio-protective effects of estrogen.


Sign in / Sign up

Export Citation Format

Share Document