scholarly journals Identification of human CD4+ T cell populations with distinct antitumor activity

2020 ◽  
Author(s):  
Michelle H. Nelson ◽  
Hannah M. Knochelmann ◽  
Stefanie R. Bailey ◽  
Logan W. Huff ◽  
Jacob S. Bowers ◽  
...  

AbstractHow naturally arising human CD4+ T helper subsets impact tumor immunity is unknown. We reported that human CD4+CD26high T cells elicit potent immunity against solid tumor malignancies. As CD26high T cells secrete type-17 cytokines and have been categorized as Th17 cells, we posited these helper populations would possess similar molecular properties. Herein, we reveal that CD26high T cells are epigenetically and transcriptionally distinct from Th17 cells. Of clinical significance, CD26high T cells engineered with a chimeric antigen receptor (CAR) ablated large human tumors to a greater extent than enriched Th17, Th1, or Th2 cells. Moreover, CD26high T cells mediated curative responses in mice, even when redirected with a suboptimal CAR and without the aid of CD8+ CAR T cells. CD26high T cells co-secreted effector cytokines at heightened levels and robustly persisted. Collectively, our work reveals the potential of human CD4+ T cell populations to improve durability of solid tumor therapies.

2020 ◽  
Vol 6 (27) ◽  
pp. eaba7443
Author(s):  
Michelle H. Nelson ◽  
Hannah M. Knochelmann ◽  
Stefanie R. Bailey ◽  
Logan W. Huff ◽  
Jacob S. Bowers ◽  
...  

How naturally arising human CD4+ T helper subsets affect cancer immunotherapy is unclear. We reported that human CD4+CD26high T cells elicit potent immunity against solid tumors. As CD26high T cells are often categorized as TH17 cells for their IL-17 production and high CD26 expression, we posited these populations would have similar molecular properties. Here, we reveal that CD26high T cells are epigenetically and transcriptionally distinct from TH17 cells. Of clinical importance, CD26high and TH17 cells engineered with a chimeric antigen receptor (CAR) regressed large human tumors to a greater extent than enriched TH1 or TH2 cells. Only human CD26high T cells mediated curative responses, even when redirected with a suboptimal CAR and without aid by CD8+ CAR T cells. CD26high T cells cosecreted effector cytokines, produced cytotoxic molecules, and persisted long term. Collectively, our work underscores the promise of CD4+ T cell populations to improve durability of solid tumor therapies.


2018 ◽  
Vol 2 (S1) ◽  
pp. 31-32
Author(s):  
Jon Kibbie ◽  
Stephanie Dillon ◽  
Moriah Castleman ◽  
Jay Liu ◽  
Martin McCarter ◽  
...  

OBJECTIVES/SPECIFIC AIMS: A hallmark of progressive HIV-1 infection is the massive activation and depletion of the gut barrier protective CD4 T helper subsets (Th17 and Th22) in the intestinal mucosa. The loss of these cells is thought to contribute to microbial translocation and systemic immune activation that occurs during chronic infection. In addition to the loss of protective Th subsets, we previously showed that chronically HIV-1 infected individuals have an altered colonic mucosal microbiome, which is in part characterized by a lower relative abundance of bacteria that produce the short-chain fatty acid butyrate in conjunction with increased relative abundance of gram-negative pathobionts. This dysbiosis was linked to markers of mucosal and systemic immune activation in these individuals. Following up on these clinical observations, we sought to understand how a loss of butyrate might contribute to HIV-associated inflammation. Initial studies showed that the addition of butyrate to cultured lamina propria mononuclear cells (LPMC) resulted in decreased pathobiont-driven gut T cell activation, HIV-1 infection levels and production of IL-17 and IFNy. Since the gut barrier protective Th17 and Th22 subsets are preferentially infected and depleted, which is critical to HIV-1 pathogenesis, we wanted to determine the mechanism by which butyrate modulates activation of these important Th subsets in the gut. METHODS/STUDY POPULATION: Total LPMCs or purified LP CD4 T cells were isolated from human jejunal tissue (n=3–6), labeled with CFSE and cultured with TCR/CD28 beads to mimic APC driven T cell activation, with the addition of butyrate at physiologic doses(0–2 mM). Four days after culture, secreted cytokine(IL-17 and IFNy) levels were measured by ELISA. Cells were then short-term (4 hr) mitogenically stimulated (PMA/Ionomycin) in the presence of a golgi transport inhibitor. Total CD4 T cell activation (CD38+/HLA-DR+, CD25+), proliferation (CFSElow), and frequencies of intracellular cytokines were measured by multi-color flow cytometry. Paired t-tests were performed to determine statistical significance. RESULTS/ANTICIPATED RESULTS: Butyrate inhibited LP CD4 T cell activation (p=0.013) and proliferation (p=0.015) within total LPMCs stimulated with TCR/CD28 beads in a dose-dependent manner, with significant activity starting at 0.125 mM. Quantification of total secreted cytokines revealed that butyrate significantly decreased both IL-17 and IFNy production after 4 days of culture at 0.0625 mM and 0.25 mM of butyrate, respectively. Assays using purified LP CD4 T cells demonstrated that butyrate directly decreased LP CD4 T cell activation, proliferation and cytokine production in response to TCR/CD28 stimulation. Studies on specific T helper subsets revealed that butyrate inhibited proliferation of Th17 cells at lower concentrations (IC50:0.147 mM) compared with Th1 (IC50:0.229 mM) and Th22 (IC50:0.258 mM) and Th non-IL-22/IL-17/IFNy producing (IC50:2.14 mM) subsets. In addition, it appeared there was a paradoxical increase of HIV-1 infection levels at lower concentrations of butyrate (0.125 mM). DISCUSSION/SIGNIFICANCE OF IMPACT: The addition of butyrate to activated LP CD4 T cells decreases TCR-mediated activation in a dose-dependent manner, and butyrate acts directly on purified LP CD4 T cell populations independent of other cell populations. Butyrate differentially inhibited the proliferation of Th17, Th1, and Th22 subsets, with Th17 cells being the most sensitive to butyrate but increased the infection levels of all T helper subsets at low concentrations. Further studies are needed to determine the mechanism of butyrate’s actions on LP Th cells and the sensitivity of Th17 cells to the inhibitory effects of butyrate. These results could help direct targeted manipulation of the colonic microbiome of HIV-1 infected individuals to help resolve inflammation and limit the impact of the infection in the gut mucosa and systemically.


2003 ◽  
Vol 10 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Adam F. Cunningham ◽  
Kai-Michael Toellner

The paradigm of T helper-1 (Th-1) and Th-2 cells developing from non-committed naïve precursors is firmly established. Th1 cells are characterized by IFN production and, in mice, the selective switching to IgG2a. Conversely IL-4 production and selective switching to IgG1 and IgE characterize Th2 cells. Analysis of Th2 inductionin vitroindicates that this polarization develops gradually in T cells activated by anti-CD3 in the presence of IL-4; conversely anti-CD3 and IFN induce Th1 cells. In this report, we explore evidence that indicates that the T helper cell polarizationin vivocannot solely be explained by the cytokine environment. This is provided by studying the early acquisition of Th1 and Th2 activities during responses to a mixture of Th1 and Th2-inducing antigens. It is shown that these divergent forms of T cell help can rapidly develop in cells within a single lymph node. It is argued that early polarization to show Th-1 or Th-2 behavior can be induced by signals delivered during cognate interaction between virgin T cells and dendritic cells, in the absence of type 1 or type 2 cytokines. This contrasts with the critical role of the cytokines in reinforcing the Th-phenotype and selectively expanding T helper clones.


2021 ◽  
Vol 13 (591) ◽  
pp. eabd8836
Author(s):  
Axel Hyrenius-Wittsten ◽  
Yang Su ◽  
Minhee Park ◽  
Julie M. Garcia ◽  
Josef Alavi ◽  
...  

The first clinically approved engineered chimeric antigen receptor (CAR) T cell therapies are remarkably effective in a subset of hematological malignancies with few therapeutic options. Although these clinical successes have been exciting, CAR T cells have hit roadblocks in solid tumors that include the lack of highly tumor-specific antigens to target, opening up the possibility of life-threatening “on-target/off-tumor” toxicities, and problems with T cell entry into solid tumor and persistent activity in suppressive tumor microenvironments. Here, we improve the specificity and persistent antitumor activity of therapeutic T cells with synthetic Notch (synNotch) CAR circuits. We identify alkaline phosphatase placental-like 2 (ALPPL2) as a tumor-specific antigen expressed in a spectrum of solid tumors, including mesothelioma and ovarian cancer. ALPPL2 can act as a sole target for CAR therapy or be combined with tumor-associated antigens such as melanoma cell adhesion molecule (MCAM), mesothelin, or human epidermal growth factor receptor 2 (HER2) in synNotch CAR combinatorial antigen circuits. SynNotch CAR T cells display superior control of tumor burden when compared to T cells constitutively expressing a CAR targeting the same antigens in mouse models of human mesothelioma and ovarian cancer. This was achieved by preventing CAR-mediated tonic signaling through synNotch-controlled expression, allowing T cells to maintain a long-lived memory and non-exhausted phenotype. Collectively, we establish ALPPL2 as a clinically viable cell therapy target for multiple solid tumors and demonstrate the multifaceted therapeutic benefits of synNotch CAR T cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3119-3119
Author(s):  
Shannon P. Hilchey ◽  
Alexander F. Rosenberg ◽  
Ollivier Hyrien ◽  
Shelley Secor-Socha ◽  
Matthew R. Cochran ◽  
...  

Abstract Abstract 3119 Tumor infiltrating T-cells tend to be hypo-functional and this loss of function may be due to intrinsic T-cell defects, impaired antigen (Ag) presentation, and/or suppression induced by extrinsic components of the microenvironment, such as regulatory T-cells (Tregs). Each of these potential mechanisms has distinct implications on the potential efficacy of immunotherapy. To determine the functional potential of follicular lymphoma (FL) derived T-cells, we analyzed, by flow cytometry, T helper (Th) subsets and Staphylococcus enterotoxin B (SEB)-induced cytokine profiles of single cell suspensions from FL involved nodes (FL; n=8), reactive lymph nodes (RLN; n=7) and normal lymph nodes (NLN; n=6; obtained during vascular surgery). SEB was used as it directly triggers the T-cell receptor, abrogating the need for Ag presentation, and overcomes Treg mediated suppression. Herein we show that, relative to NLN, FL has decreased proportions of CD4+ T-cells having either a naïve (CD45RA+) or central memory (CD45RA−CCR7+) phenotype but increased proportions of effector memory T-cells (CD45RA−CCR7−). In addition, a higher percentage of pre-stimulation FL CD4+ T-cells show an activated (CD69+) phenotype as compared to that of RLN or NLN. Upon SEB stimulation, the FL CD4+ T-cells, like those from RLN and NLN, show an additional increase in the proportion of CD69+ cells, demonstrating that the FL derived CD4+ T-cells can be activated even further. We also show that upon stimulation with SEB; (a) the proportion of Th1 cells (IL-2+IFN-g+IL-4−) in FL is similar to that seen in RLN or NLN; (b) in contrast, we observe an increased frequency of primed uncommitted precursor Thpp cells (IL-2+IFN-g−IL-4−) in FL compared to that seen in either RLN or NLN; (c) an increased proportion of Th2 cells in FL compared with NLN and; (d) an increase in the proportion of Th17 cells in FL compared to that in RLN. Lastly, the proportions of FL Th cells producing 3 or 4 cytokines simultaneously, or poly-functional CD4+ T-cells, (PFT; PFT-3 producing IL-2, IFN-g and TNF-a or PFT-4 producing IL-2, IFN-g, TNF-a and MIP-1b), after SEB stimulation is similar to that seen in RLN or NLN. These data suggest that although there is skewed Th cell differentiation in FL, as compared to that of RLN or NLN, the intrinsic ability of the FL Th cells to elicit a clinically relevant effector response (both a Th1 and Th2 response) is fully preserved. In addition, the retention of effector function of FL Th cells is further supported by the fact that the proportions of these Th cells that have poly-functional cytokine profiles after SEB stimulation is similar in FL as compared to RLN or NLN. Indeed, poly-functionality of Th cells has been shown to correlate with the elicitation of protective immunity after vaccination for infectious diseases. Finally, the proportion of uncommitted Thpp cells after SEB stimulation is highest in FL. Thpp cells are non-polarized and can still differentiate into either Th1 or Th2 cells. They can also produce several chemokines and thus may play a role in shaping the FL microenvironment by recruiting other immune-effector cells as well as developing into Th1 and Th2 cells. Taken together, our data shows that FL Th cells are fully functional within the parameters of our assays, suggesting that these cells are intrinsically capable of mediating effective anti-tumor immune responses after immunotherapy. Therefore the hypo-functionality of FL T-cells is likely due to extrinsic factors which suppress T-cell function in vivo. Thus the challenge is to develop immunotherapeutic strategies that overcome these tumor associated extrinsic mechanisms, resulting in effective anti-tumor immunity. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Masanori Abe ◽  
Yoichi Hiasa ◽  
Morikazu Onji

Many autoimmune diseases are driven by self-reactive T helper (Th) cells. A new population of effector CD4+T cells characterized by the secretion of interleukin (IL)-17, referred to as Th17 cells, has been demonstrated to be phenotypically, functionally, and developmentally distinct from Th1 and Th2 cells. Because the liver is known to be an important source of transforming growth factor-βand IL-6, which are cytokines that are crucial for Th17 differentiation, it is very likely that Th17 cells contribute to liver inflammation and autoimmunity. In contrast, another distinct subset of T cells, regulatory T cells (Treg), downregulate immune responses and play an important role in maintaining self-tolerance. In addition, there is a reciprocal relationship between Th17 cells and Tregs, in development and effector functions, and the balance between Th17 and Treg cells can affect the outcome of immune responses, particularly in autoimmune diseases. In this review, we will focus on the latest investigative findings related to Th17 cells in autoimmune liver disease.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Arvind Batra ◽  
Besir Okur ◽  
Rainer Glauben ◽  
Ulrike Erben ◽  
Jakob Ihbe ◽  
...  

Abstract Besides being mandatory in the metabolic system, adipokines like leptin directly affect immunity. Leptin was found to be necessary in T helper 1 (Th1)-dependent inflammatory processes, whereas effects on Th2 cells are rarely understood. Here, we focused on leptin in T-helper cell polarization and in Th2-mediated intestinal inflammation in vivo. The induction of cytokine-producing Th1 or Th2 cells from naive CD4+ T cells under polarizing conditions in vitro was generally decreased in cells from leptin-deficient ob/ob mice compared with wild-type mice. To explore the in vivo relevance of leptin in Th2-mediated inflammation, the model of oxazolone-induced colitis was employed in wild-type, ob/ob, and leptin-reconstituted ob/ob mice. Ob/ob mice were protected, whereas wild-type and leptin-reconstituted ob/ob mice developed colitis. The disease severity went in parallel with local production of the Th2 cytokine IL-13. A possible explanation for the protection of ob/ob mice in Th1- as well as in Th2-dependent inflammation is provided by a decreased expression of the key transcription factors for Th1 and Th2 polarization, T-bet and GATA-3, in naive ob/ob T cells. In conclusion, these results support the regulatory function of the adipokine leptin within T-cell polarization and thus in the acquired immune system and support the concept that there is a close interaction with the endocrine system.


2021 ◽  
Author(s):  
Taylor L Hickman ◽  
Eugene Choi ◽  
Kathleen R Whiteman ◽  
Sujatha Muralidharan ◽  
Tapasya Pai ◽  
...  

Purpose: The solid tumor microenvironment (TME) drives T cell dysfunction and inhibits the effectiveness of immunotherapies such as chimeric antigen receptor-based T cell (CAR T) cells. Early data has shown that modulation of T cell metabolism can improve intratumoral T cell function in preclinical models. Experimental Design: We evaluated GPC3 expression in human normal and tumor tissue specimens. We developed and evaluated BOXR1030, a novel CAR T therapeutic co-expressing glypican-3 (GPC3)-targeted CAR and exogenous glutamic-oxaloacetic transaminase 2 (GOT2) in terms of CAR T cell function both in vitro and in vivo. Results: Expression of tumor antigen GPC3 was observed by immunohistochemical staining in tumor biopsies from hepatocellular carcinoma, liposarcoma, squamous lung cancer, and Merkel cell carcinoma patients. Compared to control GPC3 CAR alone, BOXR1030 (GPC3-targeted CAR T cell that co-expressed GOT2) demonstrated superior in vivo efficacy in aggressive solid tumor xenograft models, and showed favorable attributes in vitro including an enhanced cytokine production profile, a less-differentiated T cell phenotype with lower expression of stress and exhaustion markers, an enhanced metabolic profile and increased proliferation in TME-like conditions. Conclusions: Together, these results demonstrated that co-expression of GOT2 can substantially improve the overall antitumor activity of CAR T cells by inducing broad changes in cellular function and phenotype. These data show that BOXR1030 is an attractive approach to targeting select solid tumors. To this end, BOXR1030 will be explored in the clinic to assess safety, dose-finding, and preliminary efficacy (NCT05120271).


2011 ◽  
Vol 5 (09) ◽  
pp. 640-645 ◽  
Author(s):  
Mario Milco D'Elios ◽  
Marisa Benagiano ◽  
Chiara Della Bella ◽  
Amedeo Amedei

T-cell responses are crucial for the outcome of any infection. The type of effector T-cell reaction is determined by a complex interaction of antigen-presenting cells with naive T cells and involves genetic and environmental factors, including the type of antigen, cytokines, chemokines, co-stimulatory molecules, and signalling cascades. The decision for the immune response to go in a certain direction is based not on one signal alone, but rather on many different elements acting both synergistically and antagonistically, and through feedback loops leading to activation or inhibition of T cells. In the course of evolution different types of T cells have developed, such as T helper 1 (Th1) cells, which protect against intracellular bacteria; Th2 cells, which play a role against parasites; and Th17 cells, which face extracellular bacteria and fungi


Angiogenesis ◽  
2019 ◽  
Vol 22 (4) ◽  
pp. 473-475 ◽  
Author(s):  
Parvin Akbari ◽  
Elisabeth J. M. Huijbers ◽  
Maria Themeli ◽  
Arjan W. Griffioen ◽  
Judy R. van Beijnum

Abstract T cells armed with a chimeric antigen receptor, CAR T cells, have shown extraordinary activity against certain B lymphocyte malignancies, when targeted towards the CD19 B cell surface marker. These results have led to the regulatory approval of two CAR T cell approaches. Translation of this result to the solid tumor setting has been problematic until now. A number of differences between liquid and solid tumors are likely to cause this discrepancy. The main ones of these are undoubtedly the uncomplicated availability of the target cell within the blood compartment and the abundant expression of the target molecule on the cancerous cells in the case of hematological malignancies. Targets expressed by solid tumor cells are hard to engage due to the non-adhesive and abnormal vasculature, while conditions in the tumor microenvironment can be extremely immunosuppressive. Targets in the tumor vasculature are readily reachable by CAR T cells and reside outside the immunosuppressive tumor microenvironment. It is therefore hypothesized that targeting CAR T cells towards the tumor vasculature of solid tumors may share the excellent effects of CAR T cell therapy with that against hematological malignancies. A few reports have shown promising results. Suggestions are provided for further improvement.


Sign in / Sign up

Export Citation Format

Share Document