scholarly journals VINYL: Variant prIoritizatioN bY survivaL analysis

2020 ◽  
Author(s):  
Matteo Chiara ◽  
Pietro Mandreoli ◽  
Marco Antonio Tangaro ◽  
Anna Maria D’Erchia ◽  
Sandro Sorrentino ◽  
...  

AbstractMotivationClinical applications of genome re-sequencing technologies typically generate large amounts of data that need to be carefully annotated and interpreted to identify genetic variants associated with pathological conditions. In this context, accurate and reproducible methods for the functional annotation and prioritization of genetic variants are of fundamental importance, especially when large volumes of data - like those produced by modern sequencing technologies - are involved.ResultsIn this paper, we present VINYL, a highly accurate and fully automated system for the functional annotation and prioritization of genetic variants in large scale clinical studies. Extensive analyses of both real and simulated datasets suggest that VINYL show higher accuracy and sensitivity when compared to equivalent state of the art methods, allowing the rapid and systematic identification of potentially pathogenic variants in different experimental settings.

Author(s):  
Matteo Chiara ◽  
Pietro Mandreoli ◽  
Marco Antonio Tangaro ◽  
Anna Maria D’Erchia ◽  
Sandro Sorrentino ◽  
...  

Abstract Motivation Clinical applications of genome re-sequencing technologies typically generate large amounts of data that need to be carefully annotated and interpreted to identify genetic variants potentially associated with pathological conditions. In this context, accurate and reproducible methods for the functional annotation and prioritization of genetic variants are of fundamental importance. Results In this paper, we present VINYL, a flexible and fully automated system for the functional annotation and prioritization of genetic variants. Extensive analyses of both real and simulated datasets suggest that VINYL can identify clinically relevant genetic variants in a more accurate manner compared to equivalent state of the art methods, allowing a more rapid and effective prioritization of genetic variants in different experimental settings. As such we believe that VINYL can establish itself as a valuable tool to assist healthcare operators and researchers in clinical genomics investigations. Availability VINYL is available at http://beaconlab.it/VINYL and https://github.com/matteo14c/VINYL. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Emily Breidbart ◽  
Liyong Deng ◽  
Patricia Lanzano ◽  
Xiao Fan ◽  
Jiancheng Guo ◽  
...  

Abstract Objectives There have been few large-scale studies utilizing exome sequencing for genetically undiagnosed maturity onset diabetes of the young (MODY), a monogenic form of diabetes that is under-recognized. We describe a cohort of 160 individuals with suspected monogenic diabetes who were genetically assessed for mutations in genes known to cause MODY. Methods We used a tiered testing approach focusing initially on GCK and HNF1A and then expanding to exome sequencing for those individuals without identified mutations in GCK or HNF1A. The average age of onset of hyperglycemia or diabetes diagnosis was 19 years (median 14 years) with an average HbA1C of 7.1%. Results Sixty (37.5%) probands had heterozygous likely pathogenic/pathogenic variants in one of the MODY genes, 90% of which were in GCK or HNF1A. Less frequently, mutations were identified in PDX1, HNF4A, HNF1B, and KCNJ11. For those probands with available family members, 100% of the variants segregated with diabetes in the family. Cascade genetic testing in families identified 75 additional family members with a familial MODY mutation. Conclusions Our study is one of the largest and most ethnically diverse studies using exome sequencing to assess MODY genes. Tiered testing is an effective strategy to genetically diagnose atypical diabetes, and familial cascade genetic testing identified on average one additional family member with monogenic diabetes for each mutation identified in a proband.


2021 ◽  
Author(s):  
Parsoa Khorsand ◽  
Fereydoun Hormozdiari

Abstract Large scale catalogs of common genetic variants (including indels and structural variants) are being created using data from second and third generation whole-genome sequencing technologies. However, the genotyping of these variants in newly sequenced samples is a nontrivial task that requires extensive computational resources. Furthermore, current approaches are mostly limited to only specific types of variants and are generally prone to various errors and ambiguities when genotyping complex events. We are proposing an ultra-efficient approach for genotyping any type of structural variation that is not limited by the shortcomings and complexities of current mapping-based approaches. Our method Nebula utilizes the changes in the count of k-mers to predict the genotype of structural variants. We have shown that not only Nebula is an order of magnitude faster than mapping based approaches for genotyping structural variants, but also has comparable accuracy to state-of-the-art approaches. Furthermore, Nebula is a generic framework not limited to any specific type of event. Nebula is publicly available at https://github.com/Parsoa/Nebula.


2016 ◽  
Vol 94 (suppl_4) ◽  
pp. 72-73
Author(s):  
H. Beiki ◽  
J. M. Reecy ◽  
A. Pakdel ◽  
A. Nejati Javaremi ◽  
A. Masoudi Nejad

2021 ◽  
Vol 31 (2) ◽  
pp. 148-158
Author(s):  
A. Yu. Voronkova ◽  
Yu. L. Melyanovskaya ◽  
N. V. Petrova ◽  
T. A. Adyan ◽  
E. K. Zhekaite ◽  
...  

The variety of clinical manifestations of cystic fibrosis is driven by the diversity of the CFTR gene nucleotide sequence. Descriptions of the clinical manifestations in patients with the newly identified genetic variants are of particular interest.The aim of this study was to describe clinical manifestations of the disease with the newly identified genetic variants.Methods. Data from Registry of patients with cystic fibrosis in the Russian Federation (2018) were used. The data review included three steps — the search for frequent mutations, Sanger sequencing, and the search for extensive rearrangements by MLPA. 38 pathogenic variants were identified that were not previously described in the international CFTR2 database. We selected and analyzed full case histories of 15 patients with 10 of those 38 pathogenic variants: p.Tyr84*, G1047S, 3321delG, c.583delC, CFTRdele13,14del18, CFTRdele19-22, c.2619+1G>A, c.743+2T>A, p.Glu1433Gly, and CFTRdel4-8del10-11.Results. A nonsense variant p.Tyr84* was found in 5 patients (0.08 %). Two missense variants c.3139G>A were found in 2 siblings (0.03 %). The c.4298A>G was found in 1 patient. Other variants were detected in a single patient (0.02 %) each. They included two variants of a deletion with a shift of the reading frame 3321delG and c.583delC, two splicing disorders c.2619+1G>A and c.743+2T>A, three extended rearrangements CFTRdele19-22, CFTRdele13,14del18, and CFTRdel4-8del10-11. The last two variants include 2 rearrangements on one allele, which cause the severe course in two young children. 8 of the 10 variants are accompanied by pancreatic insufficiency (PI). Among patients with p.Tyr84*, one had ABPA, one had liver transplantation, and all had Pseudomonas aeruginosa infection. Nasal polyps were diagnosed in 2 patients with p.Tyr84*, 1 with G1047S, 1 with CFTRdel4-8del10-11, and 1 patient with 3321delG, who also had osteoporosis and cystic fibrosis-related diabetes (CFRD). 2 patients with PI with 3321delG and CFTRdel4-8del10-11 genetic variants, and 1 with PI with p.Glu1433Gly genetic variant had severe protein-energy malnutrition (PEM).Conclusion. Clinical manifestations of previously undescribed CFTR genetic variants were described. 5/10 genetic variants should be attributed to class I, 3/10 – to class 7 of the function classification of pathogenic CFTR gene variants associated with transcription and translation disruptions. Class of the identified missense variants c.3139G>A and c.4298A>G has not been established and requires further functional, cultural, and molecular genetic studies.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
De-Min Cao ◽  
Qun-Feng Lu ◽  
Song-Bo Li ◽  
Ju-Ping Wang ◽  
Yu-Li Chen ◽  
...  

The genusHelicobacteris a group of Gram-negative, helical-shaped pathogens consisting of at least 36 bacterial species.Helicobacter pylori(H. pylori), infecting more than 50% of the human population, is considered as the major cause of gastritis, peptic ulcer, and gastric cancer. However, the genetic underpinnings ofH. pylorithat are responsible for its large scale epidemic and gastrointestinal environment adaption within human beings remain unclear. Core-pan genome analysis was performed among 75 representativeH. pyloriand 24 non-pylori Helicobactergenomes. There were 1173 conserved protein families ofH. pyloriand 673 of all 99Helicobactergenus strains. We found 79 genome unique regions, a total of 202,359bp, shared by at least 80% of theH. pyloribut lacked in non-pylori Helicobacterspecies. The operons, genes, and sRNAs within theH. pyloriunique regions were considered as potential ones associated with its pathogenicity and adaptability, and the relativity among them has been partially confirmed by functional annotation analysis. However, functions of at least 54 genes and 10 sRNAs were still unclear. Our analysis of protein-protein interaction showed that 30 genes within them may have the cooperation relationship.


2020 ◽  
Vol 13 (3) ◽  
pp. 174-183 ◽  
Author(s):  
Rachna Rana ◽  
Rajendra Awasthi ◽  
Bhupesh Sharma ◽  
Giriraj T. Kulkarni

: Antibiotic resistance is becoming one of the major obstacles to treatment success in various pathological conditions. Development process of a new antimicrobial agent is slow and difficult, whereas bacterial resistance is decreasing the arsenal of existing antibiotics. Therefore, there is a need to develop novel antibiotic formulations to combat the resistance of existing antibiotics. Nanoparticles are investigated as novel antibiotic formulation, but are often inefficient in practical applications. Nanotechnology presents a new frontier to overcome the issue of antibiotic resistance through the development of functionalized particles. Balance of physicochemical characteristics such as small particle size and high drug loading capacity along with improved stability are the challenges associated with large scale manufacturing of nanoantibiotic formulations. In the last 1-2 decades, a gradual increase in patents on nanoantibiotic formulations has been noted to address the resistance issues of antibiotic. The aim of this review is to consolidate recently-investigated nanoantibiotic formulations to combat antibiotic resistance.


2019 ◽  
Author(s):  
Sushant Kumar ◽  
Arif Harmanci ◽  
Jagath Vytheeswaran ◽  
Mark B. Gerstein

AbstractA rapid decline in sequencing cost has made large-scale genome sequencing studies feasible. One of the fundamental goals of these studies is to catalog all pathogenic variants. Numerous methods and tools have been developed to interpret point mutations and small insertions and deletions. However, there is a lack of approaches for identifying pathogenic genomic structural variations (SVs). That said, SVs are known to play a crucial role in many diseases by altering the sequence and three-dimensional structure of the genome. Previous studies have suggested a complex interplay of genomic and epigenomic features in the emergence and distribution of SVs. However, the exact mechanism of pathogenesis for SVs in different diseases is not straightforward to decipher. Thus, we built an agnostic machine-learning-based workflow, called SVFX, to assign a “pathogenicity score” to somatic and germline SVs in various diseases. In particular, we generated somatic and germline training models, which included genomic, epigenomic, and conservation-based features for SV call sets in diseased and healthy individuals. We then applied SVFX to SVs in six different cancer cohorts and a cardiovascular disease (CVD) cohort. Overall, SVFX achieved high accuracy in identifying pathogenic SVs. Moreover, we found that predicted pathogenic SVs in cancer cohorts were enriched among known cancer genes and many cancer-related pathways (including Wnt signaling, Ras signaling, DNA repair, and ubiquitin-mediated proteolysis). Finally, we note that SVFX is flexible and can be easily extended to identify pathogenic SVs in additional disease cohorts.


2017 ◽  
Vol 127 (5) ◽  
pp. 1798-1812 ◽  
Author(s):  
Philipp S. Wild ◽  
Janine F. Felix ◽  
Arne Schillert ◽  
Alexander Teumer ◽  
Ming-Huei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document