scholarly journals Defining endemism levels for biodiversity conservation: tree species in the Atlantic Forest hotspot

2020 ◽  
Author(s):  
Renato A.F. Lima ◽  
Vinicius Castro Souza ◽  
Marinez Ferreira de Siqueira ◽  
Hans ter Steege

AbstractEndemic species are important for biodiversity conservation. Yet, quantifying endemism remains challenging because endemism concepts can be too strict (i.e., pure endemism) or too subjective (i.e., near endemism). We propose a data-driven approach to objectively estimate the proportion of records inside a given the target area (i.e., endemism level) that optimizes the separation of near-endemics from non-endemic species. We apply this approach to the Atlantic Forest tree flora using millions of herbarium records retrieved from multiple sources. We first report an updated checklist of 5044 species for the Atlantic Forest tree flora and then we compare how species-specific endemism levels obtained from herbarium data match species-specific endemism accepted by taxonomists. We show that an endemism level of 90% separates well pure and near-endemic from non-endemic species, which in the Atlantic Forest revealed an overall endemism ratio of 45% for its tree flora. We also found that the diversity of pure and near endemics and of endemics and overall species was congruent in space. Our results for the Atlantic Forest reinforce that pure and near endemic species can be combined to quantify regional endemism and therefore to set conservation priorities taking into account endemic species distribution. We provided general guidelines on how the proposed approach can be used to assess endemism levels of regional biotas in other parts of the world.

2021 ◽  
Vol 7 (14) ◽  
pp. eabg0677
Author(s):  
Becca Franks ◽  
Christopher Ewell ◽  
Jennifer Jacquet

The unprecedented growth of aquaculture involves well-documented environmental and public-health costs, but less is understood about global animal welfare risks. Integrating data from multiple sources, we estimated the taxonomic diversity of farmed aquatic animals, the number of individuals killed annually, and the species-specific welfare knowledge (absence of which indicates extreme risk). In 2018, FAO reported 82.12 million metric tons of farmed aquatic animals from six phyla and at least 408 species—20 times the number of species of farmed terrestrial animals. The farmed aquatic animal tonnage represents 250 to 408 billion individuals, of which 59 to 129 billion are vertebrates (e.g., carps, salmonids). Specialized welfare information was available for 84 species, only 30% of individuals; the remaining 70% either had no welfare publications or were of an unknown species. With aquaculture growth outpacing welfare knowledge, immediate efforts are needed to safeguard the welfare of high-production, understudied species and to create policies that minimize welfare risks.


2021 ◽  
Vol 30 (1) ◽  
pp. 55-60
Author(s):  
Julia Fischer

Studies of nonhuman primate communication are often motivated by the desire to shed light on the evolution of speech. In contrast to human speech, the vocal repertoires of nonhuman primates are evolutionarily highly conserved. Within species-specific constraints, calls may vary in relation to the internal state of the caller or social experience. Receivers can use signalers’ calls to predict upcoming events or behavioral dispositions. Yet nonhuman primates do not appear to express or comprehend communicative or informative intent. Signalers are sensitive to the relation between their own actions and receivers’ responses, and thus, signaling behavior can be conceived as goal directed. Receivers’ ability to integrate information from multiple sources renders the system flexible and powerful. Researchers who take a linguistic or biological perspective on nonhuman primate communication should be aware of the strengths and limitations of their approaches. Both benefit from a focus on the mechanisms that underpin signaling and responses to signals.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Cassia M.G. Lemos ◽  
Pedro R. Andrade ◽  
Ricardo R. Rodrigues ◽  
Leticia Hissa ◽  
Ana P. D. Aguiar

AbstractTo achieve regional and international large-scale restoration goals with minimum costs, several restoration commitments rely on natural regeneration, a passive and inexpensive strategy. However, natural regeneration potential may vary within the landscape, mainly due to its historical context. In this work, we use spatially explicit restoration scenarios to explore how and where, within a given region, multiple restoration commitments could be combined to achieve cost-effectiveness outcomes. Our goal is to facilitate the elaboration of forest restoration plans at the regional level, taking into consideration the costs for active and passive restoration methods. The approach includes (1) a statistical analysis to estimate the natural regeneration potential for a given area based on alternative sets of biophysical, land cover, and/or socioeconomic factors and (2) the use of a land change allocation model to explore the cost-effectiveness of combining multiple restoration commitments in a given area through alternative scenarios. We test our approach in a strategic region in the Brazilian Atlantic Forest Biome, the Paraiba Valley in São Paulo State. Using the available data for 2011, calibrated for 2015, we build alternative scenarios for allocating natural regeneration until 2025. Our models indicate that the natural regeneration potential of the region is actually very low, and the cost-effectiveness outcomes are similar for all scenarios. We believe our approach can be used to support the regional-level decision-making about the implementation of multiple commitments aiming at the same target area. It can also be combined with other approaches for more refined analysis (e.g., optimization models).


2017 ◽  
Vol 65 (4) ◽  
pp. 327 ◽  
Author(s):  
Saskia Grootemaat ◽  
Ian J. Wright ◽  
Peter M. van Bodegom ◽  
Johannes H. C. Cornelissen ◽  
Veronica Shaw

Bark shedding is a remarkable feature of Australian trees, yet relatively little is known about interspecific differences in bark decomposability and flammability, or what chemical or physical traits drive variation in these properties. We measured the decomposition rate and flammability (ignitibility, sustainability and combustibility) of bark from 10 common forest tree species, and quantified correlations with potentially important traits. We compared our findings to those for leaf litter, asking whether the same traits drive flammability and decomposition in different tissues, and whether process rates are correlated across tissue types. Considerable variation in bark decomposability and flammability was found both within and across species. Bark decomposed more slowly than leaves, but in both tissues lignin concentration was a key driver. Bark took longer to ignite than leaves, and had longer mass-specific flame durations. Variation in flammability parameters was driven by different traits in the different tissues. Decomposability and flammability were each unrelated, when comparing between the different tissue types. For example, species with fast-decomposing leaves did not necessarily have fast-decomposing bark. For the first time, we show how patterns of variation in decomposability and flammability of bark diverge across multiple species. By taking species-specific bark traits into consideration there is potential to make better estimates of wildfire risks and carbon loss dynamics. This can lead to better informed management decisions for Australian forests, and eucalypt plantations, worldwide.


2020 ◽  
Vol 252 ◽  
pp. 108825
Author(s):  
Renato A. Ferreira de Lima ◽  
Vinícius Castro Souza ◽  
Marinez Ferreira de Siqueira ◽  
Hans ter Steege

2008 ◽  
Vol 8 (4) ◽  
pp. 33-42 ◽  
Author(s):  
Mário Sérgio Sigrist ◽  
Claudio José Barros de Carvalho

An important biological challenge today is the conservation of biodiversity. Biogeography, the study of the distribution patterns of organisms, is an important tool for this challenge. Endemism, the co-occurrence of several species unique to the same area, has important implications for the preservation of biodiversity, since many areas of endemism are also areas with large human impact. More rigorously defined, areas of endemism are historical units of distributional congruence of monophyletic taxa. These areas often assumed to be due to nonrandom historical events that favored conditions associated with high rates of speciation. Thus, understanding endemism and the delimitation of endemic areas has important implications for conservation. Today, most studies delimit areas of endemism by superimposing maps of distribution for various species. This approach suffers from arbitrary delimitations, however, when a great distributional data is used. In this paper we used the method of Parsimony Analysis of Endemicity (PAE) based on georeferenced quadrats in order to delimit areas of endemism. This modality of the method is important due to its testable nature and can also be used to infer area relationships. We applied the method to raw distributional data from 19 unrelated taxa to delimit general patterns of endemism in the Neotropical Region and in the Atlantic forest domain using different grid scales. Neotropical areas found are comprised over the Panama region, northern Andean region and the Atlantic forest. Atlantic forest showed a major division into two distinct components (northern x southern). Endemic areas delimited using smaller scale grids on the Atlantic forest should be considered for conservation priorities once they showed endemism at regional and local scales. The results were also compared to other studies using different taxa and methods. Finally, some considerations on the analysis scale and future perspectives of the method are presented.


Phytotaxa ◽  
2015 ◽  
Vol 219 (2) ◽  
pp. 174
Author(s):  
Fabiana Firetti Leggieri ◽  
DIEGO DEMARCO ◽  
LÚCIA G. LOHMANN

The Atlantic Forest of Brazil includes one of the highest species diversity and endemism in the planet, representing a priority for biodiversity conservation. A new species of Anemopaegma from the Atlantic Forest of Brazil is here described, illustrated and compared to its closest relatives. Anemopaegma nebulosum Firetti-Leggieri & L.G. Lohmann has been traditionally treated as a morph of Anemopaegma prostratum; however, additional morphological and anatomical studies indicated that A. nebulosum differs significantly from A. prostratum and is best treated as a separate species. More specifically, A. nebulosum is characterized by elliptic and coriaceous leaflets (vs. ovate to orbicular and membranaceous in A. prostratum), smaller leaflet blades (3.6–5.5 x 2.0–3.0 cm vs. 6.7–13.0 x 4.2–8.4 cm in A. prostratum), orbicular prophylls of the axillary buds (vs. no prophylls in A. prostratum), solitary flowers (vs. multi-flowered axillary racemes in A. prostratum) and a gibbous corolla (vs. infundibuliform corollas in A. prostratum). In addition, A. nebulosum differs from A. prostratum anatomically in having thicker leaflet blades composed of two to four layers of palisade parenchyma (vs. one to three layers in A. prostratum), and seven to eight layers in the spongy parenchyma (vs. six to eight layers in A. prostratum). A key for the identification of all species of Anemopaegma from the Atlantic Forest of Brazil is presented.


2018 ◽  
Vol 28 (8-9) ◽  
pp. 2197-2219 ◽  
Author(s):  
C. Sudhakar Reddy ◽  
V. S. Faseela ◽  
Anjaly Unnikrishnan ◽  
C. S. Jha

Phytotaxa ◽  
2014 ◽  
Vol 188 (1) ◽  
pp. 28
Author(s):  
Renato Mello-Silva ◽  
Jenifer De Carvalho Lopes

Xylopia atlantica, a new and endemic species from the atlantic forest of Bahia, Brazil, is described and illustrated. It is only know from a 150 km long stretch of land from Valença to Uruçuca, in central Bahian coast. The species has leaves up to 41 cm long, bigger than those from any other Brazilian Xylopia. Xylopia atlantica shares with X. decorticans and X. ochrantha cauli and ramiflorous inflorescences. It differs from the former by the non-exfoliating bark, and from the latter by the indument of the monocarps, sparsely yellow-tomentose versus densely golden-tomentose, in X. ochrantha. Although X. atlantica has been collected since relatively long ago, flowering individuals have never been encountered.


Sign in / Sign up

Export Citation Format

Share Document