scholarly journals A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota

2020 ◽  
Author(s):  
Rodrigo Alegria Terrazas ◽  
Katharin Balbirnie-Cumming ◽  
Jenny Morris ◽  
Pete E Hedley ◽  
Joanne Russell ◽  
...  

AbstractThe microbiota thriving in the rhizosphere, the thin layer of soil surrounding plant roots, plays a critical role in plant’s adaptation to the environment. Domestication and breeding selection have progressively differentiated the microbiota of modern crops from the ones of their wild ancestors. However, the impact of eco-geographical constraints faced by domesticated plants and crop wild relatives on recruitment and maintenance of the rhizosphere microbiota remains to be fully elucidated. Here we performed a comparative 16S rRNA gene survey of the rhizosphere of 4 domesticated and 20 wild barley (Hordeum vulgare) genotypes grown in an agricultural soil under controlled environmental conditions. We demonstrated the enrichment of individual bacteria mirrored the distinct eco-geographical constraints faced by their host plants. Unexpectedly, Elite varieties exerted a stronger genotype effect on the rhizosphere microbiota when compared with wild barley genotypes adapted to desert environments with a preferential enrichment for members of Actinobacteria. Finally, in wild barley genotypes, we discovered a limited, but significant, correlation between microbiota diversity and host genomic diversity. Our results revealed a footprint of the host’s adaptation to the environment on the assembly of the bacteria thriving at the root-soil interface. In the tested conditions, this recruitment cue layered atop of the distinct evolutionary trajectories of wild and domesticated plants and, at least in part, is encoded by the barley genome. This knowledge will be critical to design experimental approaches aimed at elucidating the recruitment cues of the barley microbiota across a range of soil types.

2019 ◽  
Author(s):  
Rodrigo Alegria Terrazas ◽  
Senga Robertson-Albertyn ◽  
Aileen Mary Corral ◽  
Carmen Escudero-Martinez ◽  
Katharin Balbirnie-Cumming ◽  
...  

AbstractBackgroundSince the dawn of agriculture, human selection on plants has progressively differentiated input-demanding productive crops from their wild progenitors thriving in marginal areas. Barley (Hordeum vulgare), the fourth most cultivated cereal globally, is a prime example of this process. We previously demonstrated that wild and domesticated barley genotypes host distinct microbial communities in their rhizosphere. Here, we tested the hypothesis that microbiota diversification is modulated by, and responds to, nitrogen (N) application in soil and assessed the impact of microbiota taxonomic and functional compositions on plant growth.MethodsWe grew two wild (H. vulgare ssp. spontaneum) and an ‘Elite’ domesticated (H. vulgare ssp. vulgare) barley genotypes in an agricultural soil treated with and without N inputs. By using a two-pronged 16S rRNA gene amplicon sequencing and comparative metagenomics approach, we determined the impact of N application on taxonomic composition and metabolic potential of the microbial communities exposed to limiting and replete N supplies. We then implemented a plant-soil feedback experiment to assess microbiotas’ recruitment cues and contribution to plant growth.ResultsN availability emerged as a modulator of the recruitment cues of the barley bacterial microbiota as evidenced by the increased number of bacterial genera differentially recruited between unplanted soil and rhizosphere communities under N-limiting conditions. This recruitment pattern mirrored the impact of the host genotype on rhizosphere bacteria. The characterisation of the assembled metagenomes of plants exposed to N-limiting conditions revealed a metabolic specialisation of the rhizosphere microbiota compared to unplanted soil controls. This specialisation is underpinned predominantly by bacteria and is manifested by the enrichment of a core set of biological processes sustaining the adaptation of polymicrobial communities such as N utilisation, quorum sensing and motility across genotypes. The quantitative variation in a group of these biological processes defined host signatures in the barley rhizosphere metagenome. Finally, a plant-soil feedback experiment revealed that the host-mediated taxonomic diversification of the bacterial microbiota is associated with barley growth under sub-optimal N supplies.ConclusionsOur results suggest that under N limiting conditions, a substrate-driven selection process underpins the assembly of barley rhizosphere microbiota. Host-microbe and microbe-microbe interactions fine-tune this process at the taxonomic and functional level across kingdoms. The disruption of these recruitment cues negatively impacts plant growth.


Birds ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 42-59
Author(s):  
Jose F. Garcia-Mazcorro ◽  
Cecilia Alanis-Lopez ◽  
Alicia G. Marroquin-Cardona ◽  
Jorge R. Kawas

Gut microbial communities play a fundamental role in health and disease, but little is known about the gut microbiota of pet bird species. This is important to better understand the impact of microbes on birds’ health but may also be relevant in a context of zoonoses. Total genomic DNA samples from pooled fecal samples from 30 flocks (4–7 pet birds per flock) representing over 150 birds of six different species (two Passeriformes: Northern Mockingbird (Mimus polyglottos) and Zebra Finch (Taeniopygia guttata), and four Psittaciformes: Lovebird (Agapornis, different species), Cockatiel (Nymphicus hollandicus), Red-rumped Parrot (Psephotus haematonotus), and Rose-ringed Parakeet (Psittacula krameri) were used for 16S rRNA gene analysis. Several taxa were found to be different among the bird species (e.g., lowest median of Lactobacillus: 2.2% in Cockatiels; highest median of Lactobacillus: 79.4% in Lovebirds). Despite marked differences among individual pooled samples, each bird species harbored a unique fecal bacterial composition, based on the analysis of UniFrac distances. A predictive approach of metagenomic function and organism-level microbiome phenotypes revealed several differences among the bird species (e.g., a higher proportion of proteobacteria with the potential to form biofilms in samples from Northern Mockingbirds). The results provide a useful catalog of fecal microbes from pet birds and encourage more research on this unexplored topic.


2020 ◽  
Author(s):  
Bastiaan W. Haak ◽  
Ricard Argelaguet ◽  
Cormac M. Kinsella ◽  
Robert F.J. Kullberg ◽  
Jacqueline M. Lankelma ◽  
...  

AbstractBacterial microbiota play a critical role in mediating local and systemic immunity, and shifts in these microbial communities have been linked to impaired outcomes in critical illness. Emerging data indicate that other intestinal organisms, including bacteriophages, viruses of eukaryotes, fungi, and protozoa, are closely interlinked with the bacterial microbiota and their host, yet their collective role during antibiotic perturbation and critical illness remains to be elucidated. Here, multi-omics factor analysis (MOFA), a novel computational strategy to systematically integrate viral, fungal and bacterial sequence data, we describe the functional impact of exposure to broad-spectrum antibiotics in healthy volunteers and critically ill patients. We observe that a loss of the anaerobic intestinal environment is directly correlated with an overgrowth of aerobic pathobionts and their corresponding bacteriophages, as well as an absolute enrichment of opportunistic yeasts capable of causing invasive disease. These findings further illustrate the complexity of transkingdom interactions within the intestinal environment, and show that modulation of the bacterial component of the microbiome has implications extending beyond this kingdom alone.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


2018 ◽  
Vol 41 (3) ◽  
pp. 255-264 ◽  
Author(s):  
J. Abraham Pérez-Pérez ◽  
David Espinosa-Victoria ◽  
Hilda V. Silva-Rojas ◽  
Lucía López-Reyes

Bacteria are an unavoidable component of the natural earthworm diet; thus, bacterial diversity in the earthworm gut is directly linked to decomposition of organic matter and development of the surrounding plants. The aim of this research was to isolate and to identify biochemically and molecularly the culturable bacterial microbiota of the digestive tract of Eisenia foetida. Earthworms were sourced from Instituto de Reconversión Productiva y Bioenergética (IRBIO) and Colegio de Postgraduados (COLPOS), México. Bacterial isolation was carried out on plates of Brain Heart Infusion (BHI) culture medium. Fifty six and 44 bacterial isolates were obtained from IRBIO and COLPOS, respectively. The population was composed of 44 Gram-negative and 56 Gram-positive isolates. Over 50 % of the bacterial isolates were rod-shaped cells. The 16S rRNA gene was sequenced and nine genera were identified in worms from IRBIO (Bacillus, Paenibacillus, Solibacillus, Staphylococcus, Arthrobacter, Pantoea, Stenotrophomonas, Acinetobacter and Aeromonas) and six in worms from COLPOS (Bacillus, Paenibacillus, Stenotrophomonas, Staphylococcus, Acinetobacter and Aeromonas). Bacillus was the predominant genus, with eight and six species in the oligochaetes from IRBIO and COLPOS, respectively. The most represented bacteria in the worms from both sites were Bacillus sp. and B. subtilis. The predominance of Bacillus was probably due to spore formation, a reproductive strategy that ensures survival and dispersion in the soil and oligochaetes digestive tract. The gut of E. foetida not only harbored bacterial species of agronomic importance but also species potentially pathogenic for humans (Staphylococcus warneri, Pantoea agglomerans and Stentrophomonas sp.). The larger bacterial diversity in worms from IRBIO could be due to their feeding on cattle manure, which is a rich source of bacteria.


Author(s):  
Valentin Sencio ◽  
Marina Gomes Machado ◽  
François Trottein

AbstractBacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host’s defense against viral respiratory infections. The gut microbiota’s composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota’s composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung–gut axis in coronavirus disease 2019.


2021 ◽  
Vol 22 (9) ◽  
pp. 4961
Author(s):  
Maria Kovalska ◽  
Eva Baranovicova ◽  
Dagmar Kalenska ◽  
Anna Tomascova ◽  
Marian Adamkov ◽  
...  

L-methionine, an essential amino acid, plays a critical role in cell physiology. High intake and/or dysregulation in methionine (Met) metabolism results in accumulation of its intermediate(s) or breakdown products in plasma, including homocysteine (Hcy). High level of Hcy in plasma, hyperhomocysteinemia (hHcy), is considered to be an independent risk factor for cerebrovascular diseases, stroke and dementias. To evoke a mild hHcy in adult male Wistar rats we used an enriched Met diet at a dose of 2 g/kg of animal weight/day in duration of 4 weeks. The study contributes to the exploration of the impact of Met enriched diet inducing mild hHcy on nervous tissue by detecting the histo-morphological, metabolomic and behavioural alterations. We found an altered plasma metabolomic profile, modified spatial and learning memory acquisition as well as remarkable histo-morphological changes such as a decrease in neurons’ vitality, alterations in the morphology of neurons in the selective vulnerable hippocampal CA 1 area of animals treated with Met enriched diet. Results of these approaches suggest that the mild hHcy alters plasma metabolome and behavioural and histo-morphological patterns in rats, likely due to the potential Met induced changes in “methylation index” of hippocampal brain area, which eventually aggravates the noxious effect of high methionine intake.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Brianne A. Bruijns ◽  
Andrew M. Johnson ◽  
Jennifer D. Irwin ◽  
Shauna M. Burke ◽  
Molly Driediger ◽  
...  

Abstract Background Early childhood educators (ECEs) play a critical role in promoting physical activity (PA) among preschoolers in childcare; thus, PA-related training for ECEs is essential. The Supporting PA in the Childcare Environment (SPACE) intervention incorporated: 1. shorter, more frequent outdoor play sessions; 2. provision of portable play equipment; and, PA training for ECEs. An extension of the SPACE intervention (the SPACE-Extension) incorporated only the shorter, more frequent outdoor play periods component of the original SPACE intervention. The purpose of this study was to explore the individual impact of these interventions on ECEs’ PA-related self-efficacy and knowledge. Methods ECEs from the SPACE (n = 83) and SPACE-Extension (n = 31) were administered surveys at all intervention time-points to assess: self-efficacy to engage preschoolers in PA (n = 6 items; scale 0 to 100); self-efficacy to implement the intervention (n = 6 items); and, knowledge of preschooler-specific PA and screen-viewing guidelines (n = 2 items). A linear mixed effects model was used to analyze the impact of each intervention on ECEs’ self-efficacy and knowledge and controlled for multiple comparison bias. Results The SPACE intervention significantly impacted ECEs’ self-efficacy to engage preschoolers in PA for 180 min/day (main effect), and when outdoor playtime was not an option (interaction effect). Further, the interaction model for ECEs’ knowledge of the total PA guideline for preschoolers approached significance when compared to the main effects model. Participants within the SPACE-Extension did not demonstrate any significant changes in self-efficacy or knowledge variables. Conclusions Findings from this study highlight the benefit of ECE training in PA with regard to fostering their PA-related self-efficacy and knowledge. Future research should explore the impact of PA training for ECEs uniquely in order to determine if this intervention component, alone, can produce meaningful changes in children’s PA behaviours at childcare.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Mary Frances Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Mirghani Mohamed ◽  
Edwin Swiatlo ◽  
...  

Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.


Sign in / Sign up

Export Citation Format

Share Document