scholarly journals Constitutive activation of leucine-rich repeat receptor kinase signaling pathways by BAK1-interacting receptor-like kinase 3 chimera

Author(s):  
Ulrich Hohmann ◽  
Priya Ramakrishna ◽  
Kai Wang ◽  
Laura Lorenzo-Orts ◽  
Joel Nicolet ◽  
...  

AbstractReceptor kinases with extracellular leucine-rich repeat domains (LRR-RKs) form the largest group of membrane signaling proteins in plants. LRR-RKs can sense small molecule, peptide or protein ligands, and may be activated by ligand-induced interaction with a shape complementary SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptor kinase. We have previously shown that SERKs can also form constitutive, ligand-independent complexes with the LRR ectodomains of BAK1-interacting receptor-like kinase 3 (BIR3) receptor pseudokinases, negative regulators of LRR-RK signaling. Here we report that receptor chimaera in which the extracellular LRR domain of BIR3 is fused to the cytoplasmic kinase domains of the SERK-dependent LRR-RKs BRASSINOSTEROID INSENSITIVE1, HAESA and ERECTA form tight complexes with endogenous SERK co-receptors in the absence of ligand stimulus. Expression of these chimaera under the control of the endogenous promoter of the respective LRR-RK leads to strong gain-of-function brassinosteroid, floral abscission and stomatal patterning phenotypes, respectively. Importantly, a BIR3-GSO1/SGN3 chimera can partially complement sgn3 Casparian strip formation phenotypes, suggesting that GSO1/SGN3 receptor activation is also mediated by SERK proteins. Collectively, our protein engineering approach may be used to elucidate the physiological functions of orphan LRR-RKs and to identify their receptor activation mechanism in single transgenic lines.

2018 ◽  
Author(s):  
Ulrich Hohmann ◽  
Joël Nicolet ◽  
Andrea Moretti ◽  
Ludwig A. Hothorn ◽  
Michael Hothorn

AbstractThe leucine-rich repeat receptor kinase (LRR-RK) BRI1 requires a shape-complementary SERK co-receptor for brassinosteroid sensing and receptor activation. Interface mutations that weaken the interaction between receptor and co-receptor in vitro reduce brassinosteroid signaling responses. The SERK3 elongated (elg) allele maps to the complex interface and shows enhanced brassinosteroid signaling, but surprisingly no tighter binding to the BRI1 ectodomain in vitro. Here, we report that rather than promoting the interaction with BRI1, the elg mutation disrupts the ability of the co-receptor to interact with the ectodomains of BIR receptor pseudokinases, negative regulators of LRR-RK signaling. A conserved lateral surface patch in BIR LRR domains is required for targeting SERK co-receptors and the elg allele maps to the core of the complex interface in a 1.25 Å BIR3 - SERK1 structure. Collectively, our structural, quantitative biochemical and genetic analyses suggest that brassinosteroid signaling complex formation is negatively regulated by BIR receptor ectodomains.


2020 ◽  
Vol 32 (10) ◽  
pp. 3311-3323
Author(s):  
Ulrich Hohmann ◽  
Priya Ramakrishna ◽  
Kai Wang ◽  
Laura Lorenzo-Orts ◽  
Joel Nicolet ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jack Rhodes ◽  
Huanjie Yang ◽  
Steven Moussu ◽  
Freddy Boutrot ◽  
Julia Santiago ◽  
...  

AbstractPlant genomes encode hundreds of receptor kinases and peptides, but the number of known plant receptor-ligand pairs is limited. We report that the Arabidopsis leucine-rich repeat receptor kinase LRR-RK MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2) is the receptor for the SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) phytocytokines. MIK2 is necessary and sufficient for immune responses triggered by multiple SCOOP peptides, suggesting that MIK2 is the receptor for this divergent family of peptides. Accordingly, the SCOOP12 peptide directly binds MIK2 and triggers complex formation between MIK2 and the BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) co-receptor. MIK2 is required for resistance to the important root pathogen Fusarium oxysporum. Notably, we reveal that Fusarium proteomes encode SCOOP-like sequences, and corresponding synthetic peptides induce MIK2-dependent immune responses. These results suggest that MIK2 may recognise Fusarium-derived SCOOP-like sequences to induce immunity against Fusarium. The definition of SCOOPs as MIK2 ligands will help to unravel the multiple roles played by MIK2 during plant growth, development and stress responses.


2018 ◽  
Author(s):  
Chong Zhang ◽  
Hua Chen ◽  
Rui-Rong Zhuang ◽  
Yuting Chen ◽  
Ye Deng ◽  
...  

AbstractBacterial wilt caused by Ralstonia solanacearum is a devastating disease that infects hundreds of plant species. Host factors involved in disease resistance and pathogenesis remain poorly characterized. An up regulated and leucine-rich repeat receptor-like kinase characterized as CLAVATA1 and named AhRLK1 was obtained by microarray analysis in response to R. solanacearum in peanut. AhRLK1 contained presumably, a signal peptide, ten leucine-rich repeat (LRR) domains and conserved motifs of intracellular kinases. For subcellular localization, the AhRLK1 protein was visualized only in the plasma membrane. After inoculation with R. solanacearum, AhRLK1 was constantly up regulated in the susceptible variety Xinhuixiaoli but showed little changed in the resistant cultivar Yueyou92. Different hormones, including salicylic acid, abscisic acid, methyl jasmonate, and ethephon, induced expression, but expression was completely down regulated under cold and drought treatments. Transient overexpression provoked a hypersensitive response (HR) in Nicotiana benthamiana following agro-infiltration. Furthermore, in transgenic tobacco with overexpression of the gene, the resistance to R. solanacearum increased significantly. By contrast, most representative defense-responsive genes in HR, SA, JA and ET signal pathways such as NtHIN1, NtPR2, NtLOX1, and NtACS6, among others, were considerably up regulated in the AhRLK1 transgenic lines. Additionally, the EDS1 and PAD4 in the R gene signal were also up regulated in transgenic plants, but the NDR1 and NPR1 genes were down regulated. Accordingly, we suggest that AhRLK1 increases the defense response to R. solanacearum via HR and hormone defense signalling, associated with the EDS1 pathway of R gene signalling. The results provide new understanding of CLV1 function and will contribute to genetic enhancement of peanut.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ke Xu ◽  
Joris Jourquin ◽  
Maria Fransiska Njo ◽  
Long Nguyen ◽  
Tom Beeckman ◽  
...  

Leucine-rich repeat receptor-like kinases (LRR-RLKs) play fundamental roles in cell-to-cell and plant-environment communication. LRR-RLKs can function as receptors perceiving endogenous or external ligands, or as coreceptors, which stabilize the complex, and enhance transduction of the intracellular signal. The LRR-RLK BAK1 is a coreceptor for different developmental and immunity pathways. In this article, we identified PXY-CORRELATED 3 (PXC3) as a BAK1-interacting LRR-RLK, which was previously reported to be transcribed in vascular tissues co-expressed with PHLOEM INTERCALATED WITH XYLEM (PXY), the receptor of the TDIF/CLE41 peptide. Characterization of pxc3 loss-of-function mutants revealed reduced hypocotyl stele width and vascular cells compared to wild type, indicating that PXC3 plays a role in the vascular development in Arabidopsis. Furthermore, our data suggest that PXC3 might function as a positive regulator of the CLE41/TDIF–TDR/PXY signaling pathway.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3081 ◽  
Author(s):  
Sayan Chakraborty ◽  
Brian Nguyen ◽  
Syed Danyal Wasti ◽  
Guozhou Xu

In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongmei Ma ◽  
Bei Liu ◽  
Lingqiao Ge ◽  
Yinyin Weng ◽  
Xiaohui Cao ◽  
...  

Abstract Background Alfalfa (Medicago sativa L.) is a perennial legume extensively planted throughout the world as a high nutritive value livestock forage. Flowering time is an important agronomic trait that contributes to the production of alfalfa hay and seeds. However, the underlying molecular mechanisms of flowering time regulation in alfalfa are not well understood. Results In this study, an early-flowering alfalfa genotype 80 and a late-flowering alfalfa genotype 195 were characterized for the flowering phenotype. Our analysis revealed that the lower jasmonate (JA) content in new leaves and the downregulation of JA biosynthetic genes (i.e. lipoxygenase, the 12-oxophytodienoate reductase-like protein, and salicylic acid carboxyl methyltransferase) may play essential roles in the early-flowering phenotype of genotype 80. Further research indicated that genes encode pathogenesis-related proteins [e.g. leucine rich repeat (LRR) family proteins, receptor-like proteins, and toll-interleukin-like receptor (TIR)-nucleotide-binding site (NBS)-LRR class proteins] and members of the signaling receptor kinase family [LRR proteins, kinases domain of unknown function 26 (DUF26) and wheat leucine-rich repeat receptor-like kinase10 (LRK10)-like kinases] are related to early flowering in alfalfa. Additionally, those involved in secondary metabolism (2-oxoglutarate/Fe (II)-dependent dioxygenases and UDP-glycosyltransferase) and the proteasome degradation pathway [really interesting new gene (RING)/U-box superfamily proteins and F-box family proteins] are also related to early flowering in alfalfa. Conclusions Integrated phenotypical, physiological, and transcriptomic analyses demonstrate that hormone biosynthesis and signaling pathways, pathogenesis-related genes, signaling receptor kinase family genes, secondary metabolism genes, and proteasome degradation pathway genes are responsible for the early flowering phenotype in alfalfa. This will provide new insights into future studies of flowering time in alfalfa and inform genetic improvement strategies for optimizing this important trait.


Sign in / Sign up

Export Citation Format

Share Document