scholarly journals Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3081 ◽  
Author(s):  
Sayan Chakraborty ◽  
Brian Nguyen ◽  
Syed Danyal Wasti ◽  
Guozhou Xu

In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.

Author(s):  
Ulrich Hohmann ◽  
Priya Ramakrishna ◽  
Kai Wang ◽  
Laura Lorenzo-Orts ◽  
Joel Nicolet ◽  
...  

AbstractReceptor kinases with extracellular leucine-rich repeat domains (LRR-RKs) form the largest group of membrane signaling proteins in plants. LRR-RKs can sense small molecule, peptide or protein ligands, and may be activated by ligand-induced interaction with a shape complementary SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptor kinase. We have previously shown that SERKs can also form constitutive, ligand-independent complexes with the LRR ectodomains of BAK1-interacting receptor-like kinase 3 (BIR3) receptor pseudokinases, negative regulators of LRR-RK signaling. Here we report that receptor chimaera in which the extracellular LRR domain of BIR3 is fused to the cytoplasmic kinase domains of the SERK-dependent LRR-RKs BRASSINOSTEROID INSENSITIVE1, HAESA and ERECTA form tight complexes with endogenous SERK co-receptors in the absence of ligand stimulus. Expression of these chimaera under the control of the endogenous promoter of the respective LRR-RK leads to strong gain-of-function brassinosteroid, floral abscission and stomatal patterning phenotypes, respectively. Importantly, a BIR3-GSO1/SGN3 chimera can partially complement sgn3 Casparian strip formation phenotypes, suggesting that GSO1/SGN3 receptor activation is also mediated by SERK proteins. Collectively, our protein engineering approach may be used to elucidate the physiological functions of orphan LRR-RKs and to identify their receptor activation mechanism in single transgenic lines.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongmei Ma ◽  
Bei Liu ◽  
Lingqiao Ge ◽  
Yinyin Weng ◽  
Xiaohui Cao ◽  
...  

Abstract Background Alfalfa (Medicago sativa L.) is a perennial legume extensively planted throughout the world as a high nutritive value livestock forage. Flowering time is an important agronomic trait that contributes to the production of alfalfa hay and seeds. However, the underlying molecular mechanisms of flowering time regulation in alfalfa are not well understood. Results In this study, an early-flowering alfalfa genotype 80 and a late-flowering alfalfa genotype 195 were characterized for the flowering phenotype. Our analysis revealed that the lower jasmonate (JA) content in new leaves and the downregulation of JA biosynthetic genes (i.e. lipoxygenase, the 12-oxophytodienoate reductase-like protein, and salicylic acid carboxyl methyltransferase) may play essential roles in the early-flowering phenotype of genotype 80. Further research indicated that genes encode pathogenesis-related proteins [e.g. leucine rich repeat (LRR) family proteins, receptor-like proteins, and toll-interleukin-like receptor (TIR)-nucleotide-binding site (NBS)-LRR class proteins] and members of the signaling receptor kinase family [LRR proteins, kinases domain of unknown function 26 (DUF26) and wheat leucine-rich repeat receptor-like kinase10 (LRK10)-like kinases] are related to early flowering in alfalfa. Additionally, those involved in secondary metabolism (2-oxoglutarate/Fe (II)-dependent dioxygenases and UDP-glycosyltransferase) and the proteasome degradation pathway [really interesting new gene (RING)/U-box superfamily proteins and F-box family proteins] are also related to early flowering in alfalfa. Conclusions Integrated phenotypical, physiological, and transcriptomic analyses demonstrate that hormone biosynthesis and signaling pathways, pathogenesis-related genes, signaling receptor kinase family genes, secondary metabolism genes, and proteasome degradation pathway genes are responsible for the early flowering phenotype in alfalfa. This will provide new insights into future studies of flowering time in alfalfa and inform genetic improvement strategies for optimizing this important trait.


2019 ◽  
Vol 70 (1) ◽  
pp. 153-186 ◽  
Author(s):  
Vilde Olsson ◽  
Lisa Joos ◽  
Shanshuo Zhu ◽  
Kris Gevaert ◽  
Melinka A. Butenko ◽  
...  

During the past decade, a flurry of research focusing on the role of peptides as short- and long-distance signaling molecules in plant cell communication has been undertaken. Here, we focus on peptides derived from nonfunctional precursors, and we address several key questions regarding peptide signaling. We provide an overview of the regulatory steps involved in producing a biologically active peptide ligand that can bind its corresponding receptor(s) and discuss how this binding and subsequent activation lead to specific cellular outputs. We discuss different experimental approaches that can be used to match peptide ligands with their receptors. Lastly, we explore how peptides evolved from basic signaling units regulating essential processes in plants to more complex signaling systems as new adaptive traits developed and how nonplant organisms exploit this signaling machinery by producing peptide mimics.


Parasitology ◽  
1997 ◽  
Vol 115 (7) ◽  
pp. 55-66 ◽  
Author(s):  
M. PLEBANSKI ◽  
E. A. M. LEE ◽  
A. V. S. HILL

T cells are central to immunity in malaria. CD4+ helper T cells favour the generation of high-affinity antibodies that are effective against blood stages and they are necessary to establish immunological memory. The intrahepatic stage of infection can be eliminated by specific CD8+ cytotoxic T cells (CTL). Cytokines secreted by CD4+ T cells may also contribute to liver stage immunity. Evolution has selected varied mechanisms in pathogens to avoid recognition by T cells. T cells recognize foreign epitopes as complexes with host major histocompatibility (MHC) molecules. Thus, a simple form of evasion is to mutate amino acid residues which allow binding to an MHC allele. Recently, more sophisticated forms of polymorphic evasion have been described. In altered peptide ligand (APL) antagonism, the concurrent presentation of particular closely related epitope variants can prevent memory T cell effector functions such as cytotoxicity, lymphokine production and proliferation. In immune interference, the effect of the concurrent presentation of such related epitope variants can go a step further and prevent the induction of memory T cells from naive precursors. The analysis of immune responses to a protein of P. falciparum, the circumsporozoite protein (CSP), indicates that the malaria parasite may utilize these evasion strategies.


Author(s):  
А.В. Данилкович ◽  
A.V. Danilkovich

Taguchi method was used to optimize peptide ligand structure using the H-2/TCR complex (PDB ID 2Z31). This approach greatly reduces the number of experiments that are required to analyze the contribution of various amino acid residues for each position into ligand molecule. Taguchi matrix was used to design a set of peptide ligands for molecular docking and molecular mechanics energy minimization. This approach allowed creating a new peptide structure with lower molecular mechanics energy than native peptide and demonstrates the applicability of the Taguchi method for peptide ligand optimization.


2010 ◽  
Vol 88 (2) ◽  
pp. 203-210 ◽  
Author(s):  
David N. Langelaan ◽  
Jan K. Rainey

The membrane catalysis hypothesis states that a peptide ligand activates its target receptor after an initial interaction with the surrounding membrane. Upon membrane binding and interaction, the ligand is structured such that receptor binding and activation is encouraged. As evidence for this hypothesis, there are numerous studies concerning the conformation that peptides adopt in membrane mimetic environments. This mini-review analyzes the features of ligand peptides with an available high-resolution membrane-induced structure and a characterized membrane-binding region. At the peptide–membrane interface, both amphipathic helices and turn structures are commonly formed in peptide ligands and both hydrophobic and electrostatic interactions can be responsible for membrane binding. Apelin is the ligand to the G-protein coupled receptor (GPCR) named APJ, with various important physiological effects, which we have recently characterized both in solution and bound to anionic micelles. The structural changes that apelin undergoes when binding to micelles provide strong evidence for membrane catalysis of apelin–APJ interactions.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Katharina E. Rosenbusch ◽  
Arjan Kortholt

Human LRRK2 (Leucine-Rich Repeat Kinase 2) has been associated with both familial and idiopathic Parkinson’s disease (PD). Although several LRRK2 mediated pathways and interaction partners have been identified, the cellular functions of LRRK2 and LRRK2 mediated progression of PD are still only partially understood. LRRK2 belongs to the group of Roco proteins which are characterized by the presence of a Ras-like G-domain (Roc), a C-terminal of Roc domain (COR), a kinase, and several protein-protein interaction domains. Roco proteins exhibit a complex activation mechanism involving intramolecular signaling, dimerization, and substrate/effector binding. Importantly, PD mutations in LRRK2 have been linked to a decreased GTPase and impaired kinase activity, thus providing putative therapeutic targets. To fully explore these potential targets it will be crucial to understand the function and identify the pathways responsible for LRRK2-linked PD. Here, we review the recent progress in elucidating the complex LRRK2 activation mechanism, describe the accumulating evidence that link LRRK2-mediated PD to mitochondrial dysfunction and aberrant autophagy, and discuss possible ways for therapeutically targeting LRRK2.


Sign in / Sign up

Export Citation Format

Share Document