scholarly journals The impact of cell geometry and the cytoskeleton on the nucleo-cytoplasmic localisation of the SMYD3 methyltransferase suggests that the epigenetic machinery is mechanosensitive

Author(s):  
David Pereira ◽  
Alain Richert ◽  
Souhila Medjkane ◽  
Sylvie Hénon ◽  
Jonathan B Weitzman

Mechanical cues from the cellular microenvironment are converted into biochemical signals controlling diverse cell behaviours, including growth and differentiation. But it is still unclear how mechanotransduction ultimately affects nuclear readouts, genome function and transcriptional programs. Key signaling pathways and transcription factors can be activated, and can relocalize to the nucleus, upon mechanosensing. Here, we tested the hypothesis that epigenetic regulators, such as methyltransferase enzymes, might also contribute to mechanotransduction. We found that the SMYD3 lysine methyltransferase is spatially redistributed dependent on cell geometry (cell shape and aspect ratio) in murine myoblasts. Specifically, elongated rectangles were less permissive than square shapes to SMYD3 nuclear accumulation, via reduced nuclear import. Notably, SMYD3 has both nuclear and cytoplasmic substrates. The distribution of SMYD3 in response to cell geometry correlated with cytoplasmic and nuclear lysine tri-methylation (Kme3) levels, but not Kme2. Moreover, drugs targeting cytoskeletal acto-myosin induced nuclear accumulation of Smyd3. We also observed that square vs rectangular geometry impacted the nuclear-cytoplasmic relocalisation of several mechano-sensitive proteins, notably YAP/TAZ proteins and the SETDB1 methyltransferase. Thus, mechanical cues from cellular geometric shapes are transduced by a combination of transcription factors and epigenetic regulators shuttling between the cell nucleus and cytoplasm.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Pereira ◽  
Alain Richert ◽  
Souhila Medjkane ◽  
Sylvie Hénon ◽  
Jonathan B. Weitzman

AbstractMechanical cues from the cellular microenvironment are converted into biochemical signals controlling diverse cell behaviours, including growth and differentiation. But it is still unclear how mechanotransduction ultimately affects nuclear readouts, genome function and transcriptional programs. Key signaling pathways and transcription factors can be activated, and can relocalize to the nucleus, upon mechanosensing. Here, we tested the hypothesis that epigenetic regulators, such as methyltransferase enzymes, might also contribute to mechanotransduction. We found that the SMYD3 lysine methyltransferase is spatially redistributed dependent on cell geometry (cell shape and aspect ratio) in murine myoblasts. Specifically, elongated rectangles were less permissive than square shapes to SMYD3 nuclear accumulation, via reduced nuclear import. Notably, SMYD3 has both nuclear and cytoplasmic substrates. The distribution of SMYD3 in response to cell geometry correlated with cytoplasmic and nuclear lysine tri-methylation (Kme3) levels, but not Kme2. Moreover, drugs targeting cytoskeletal acto-myosin induced nuclear accumulation of Smyd3. We also observed that square vs rectangular geometry impacted the nuclear-cytoplasmic relocalisation of several mechano-sensitive proteins, notably YAP/TAZ proteins and the SETDB1 methyltransferase. Thus, mechanical cues from cellular geometric shapes are transduced by a combination of transcription factors and epigenetic regulators shuttling between the cell nucleus and cytoplasm. A mechanosensitive epigenetic machinery could potentially affect differentiation programs and cellular memory.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Richard Panayiotou ◽  
Francesc Miralles ◽  
Rafal Pawlowski ◽  
Jessica Diring ◽  
Helen R Flynn ◽  
...  

The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A.


Author(s):  
Éva Leiter ◽  
Tamás Emri ◽  
Klaudia Pákozdi ◽  
László Hornok ◽  
István Pócsi

Abstract Regulation of signal transduction pathways is crucial for the maintenance of cellular homeostasis and organismal development in fungi. Transcription factors are key elements of this regulatory network. The basic-region leucine zipper (bZIP) domain of the bZIP-type transcription factors is responsible for DNA binding while their leucine zipper structural motifs are suitable for dimerization with each other facilitiating the formation of homodimeric or heterodimeric bZIP proteins. This review highlights recent knowledge on the function of fungal orthologs of the Schizosaccharomyces pombe Atf1, Aspergillus nidulans AtfA, and Fusarium verticillioides FvAtfA, bZIP-type transcription factors with a special focus on pathogenic species. We demonstrate that fungal Atf1-AtfA-FvAtfA orthologs play an important role in vegetative growth, sexual and asexual development, stress response, secondary metabolite production, and virulence both in human pathogens, including Aspergillus fumigatus, Mucor circinelloides, Penicillium marneffei, and Cryptococcus neoformans and plant pathogens, like Fusarium ssp., Magnaporthe oryzae, Claviceps purpurea, Botrytis cinerea, and Verticillium dahliae. Key points • Atf1 orthologs play crucial role in the growth and development of fungi. • Atf1 orthologs orchestrate environmental stress response of fungi. • Secondary metabolite production and virulence are coordinated by Atf1 orthologs.


2021 ◽  
Vol 22 (12) ◽  
pp. 6401
Author(s):  
Younglan Lim ◽  
Nam-On Ku

Although hepatocellular carcinoma (HCC) is developed with various etiologies, protection of hepatocytes seems basically essential to prevent the incidence of HCC. Keratin 8 and keratin 18 (K8/K18) are cytoskeletal intermediate filament proteins that are expressed in hepatocytes. They maintain the cell shape and protect cells under stress conditions. Their protective roles in liver damage have been described in studies of mouse models, and K8/K18 mutation frequency in liver patients. Interestingly, K8/K18 bind to signaling proteins such as transcription factors and protein kinases involved in HCC development. Since K8/K18 are abundant cytoskeletal proteins, K8/K18 binding with the signaling factors can alter the availability of the factors. Herein, we discuss the potential roles of K8/K18 in HCC development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joseph d’Alessandro ◽  
Alex Barbier--Chebbah ◽  
Victor Cellerin ◽  
Olivier Benichou ◽  
René Marc Mège ◽  
...  

AbstractLiving cells actively migrate in their environment to perform key biological functions—from unicellular organisms looking for food to single cells such as fibroblasts, leukocytes or cancer cells that can shape, patrol or invade tissues. Cell migration results from complex intracellular processes that enable cell self-propulsion, and has been shown to also integrate various chemical or physical extracellular signals. While it is established that cells can modify their environment by depositing biochemical signals or mechanically remodelling the extracellular matrix, the impact of such self-induced environmental perturbations on cell trajectories at various scales remains unexplored. Here, we show that cells can retrieve their path: by confining motile cells on 1D and 2D micropatterned surfaces, we demonstrate that they leave long-lived physicochemical footprints along their way, which determine their future path. On this basis, we argue that cell trajectories belong to the general class of self-interacting random walks, and show that self-interactions can rule large scale exploration by inducing long-lived ageing, subdiffusion and anomalous first-passage statistics. Altogether, our joint experimental and theoretical approach points to a generic coupling between motile cells and their environment, which endows cells with a spatial memory of their path and can dramatically change their space exploration.


2021 ◽  
Vol 22 (11) ◽  
pp. 6074
Author(s):  
Maciej Danielewski ◽  
Agnieszka Matuszewska ◽  
Adam Szeląg ◽  
Tomasz Sozański

Nutrition determines our health, both directly and indirectly. Consumed foods affect the functioning of individual organs as well as entire systems, e.g., the cardiovascular system. There are many different diets, but universal guidelines for proper nutrition are provided in the WHO healthy eating pyramid. According to the latest version, plant products should form the basis of our diet. Many groups of plant compounds with a beneficial effect on human health have been described. Such groups include anthocyanins and iridoids, for which it has been proven that their consumption may lead to, inter alia, antioxidant, cholesterol and lipid-lowering, anti-obesity and anti-diabetic effects. Transcription factors directly affect a number of parameters of cell functions and cellular metabolism. In the context of lipid and cholesterol metabolism, five particularly important transcription factors can be distinguished: liver X receptor (LXR), peroxisome proliferator-activated receptor-α (PPAR-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα) and sterol regulatory element-binding protein 1c (SREBP-1c). Both anthocyanins and iridoids may alter the expression of these transcription factors. The aim of this review is to collect and systematize knowledge about the impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis.


2010 ◽  
Vol 191 (2) ◽  
pp. 233-236 ◽  
Author(s):  
Jagesh V. Shah

In this issue, Pitaval et al. (2010. J. Cell Biol. doi:10.1083/jcb.201004003) demonstrate that cell geometry can regulate the elaboration of a primary cilium. Their findings and approaches are part of a historical line of inquiry investigating the role of cell shape in intracellular organization and cellular function.


2014 ◽  
Vol 89 (3) ◽  
pp. 1719-1730 ◽  
Author(s):  
Aurélia Cassany ◽  
Jessica Ragues ◽  
Tinglu Guan ◽  
Dominique Bégu ◽  
Harald Wodrich ◽  
...  

ABSTRACTIn this study, we characterized the molecular basis for binding of adenovirus (AdV) to the cytoplasmic face of the nuclear pore complex (NPC), a key step during delivery of the viral genome into the nucleus. We used RNA interference (RNAi) to deplete cells of either Nup214 or Nup358, the two major Phe-Gly (FG) repeat nucleoporins localized on the cytoplasmic side of the NPC, and evaluated the impact on hexon binding and AdV infection. The accumulation of purified hexon trimers or partially disassembled AdV at the nuclear envelope (NE) was observed in digitonin-permeabilized cells in the absence of cytosolic factors. Bothin vitrohexon binding andin vivonuclear import of the AdV genome were strongly reduced in Nup214-depleted cells but still occurred in Nup358-depleted cells, suggesting that Nup214 is a major binding site of AdV during infection. The expression of an NPC-targeted N-terminal domain of Nup214 in Nup214-depleted cells restored the binding of hexon at the NE and the nuclear import of protein VII (pVII), indicating that this region is sufficient to allow AdV binding. We further narrowed the binding site to a 137-amino-acid segment in the N-terminal domain of Nup214. Together, our results have identified a specific region within the N terminus of Nup214 that acts as a direct NPC binding site for AdV.IMPORTANCEAdVs, which have the largest genome of nonenveloped DNA viruses, are being extensively explored for use in gene therapy, especially in alternative treatments for cancers that are refractory to traditional therapies. In this study, we characterized the molecular basis for binding of AdV to the cytoplasmic face of the NPC, a key step for delivery of the viral genome into the nucleus. Our data indicate that a 137-amino-acid region of the nucleoporin Nup214 is a binding site for the major AdV capsid protein, hexon, and that this interaction is required for viral DNA import. These findings provide additional insight on how AdV exploits the nuclear transport machinery for infection. The results could promote the development of new strategies for gene transfer and enhance understanding of the nuclear import of other viral DNA genomes, such as those of papillomavirus or hepatitis B virus that induce specific cancers.


2018 ◽  
Vol 18 (6) ◽  
pp. 538-557 ◽  
Author(s):  
Soraya Sajadimajd ◽  
Mozafar Khazaei

Oxidative stress due to imbalance between ROS production and detoxification plays a pivotal role in determining cell fate. In response to the excessive ROS, apoptotic signaling pathway is activated to promote normal cell death. However, through deregulation of biomolecules, high amount of ROS promotes carcinogenesis in cells with defective signaling factors. In this line, NRF2 appears to be as a master regulator, which protects cells from oxidative and electrophilic stress. Nrf2 is an intracellular transcription factor that regulates the expression of a number of genes to encode anti-oxidative enzymes, detoxifying factors, anti-apoptotic proteins and drug transporters. Under normal condition, Nrf2 is commonly degraded in cytoplasm by interaction with Keap1 inhibitor as an adaptor for ubiquitination factors. However, high amount of ROS activates tyrosine kinases to dissociate Nrf2: Keap1 complex, nuclear import of Nrf2 and coordinated activation of cytoprotective gene expression. Nevertheless, deregulation of Nrf2 and/or Keap1 due to mutation and activated upstream oncogenes is associated with nuclear accumulation and constitutive activation of Nrf2 to protect cells from apoptosis and induce proliferation, metastasis and chemoresistance. Owning to the interplay of ROS and Nrf2 signaling pathways with carcinogenesis, Nrf2 modulation seems to be important in the personalization of cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document