scholarly journals Nucleosome assembly and disassembly pathways

2020 ◽  
Author(s):  
A. Hatakeyama ◽  
R. Retureau ◽  
M. Pasi ◽  
B. Hartmann ◽  
C. Nogues ◽  
...  

AbstractNucleosome assembly and disassembly play a central role in the regulation of gene expression. Here we use PhAST (Photochemical Analysis of Structural Transitions) to monitor at the base pair level, structural alterations induced all along DNA upon histone binding or release. By offering the first consistent, detailed comparison of nucleosome assembly and disassembly in vitro, we are able to reveal similarities and differences between the two processes. We identify multiple intermediate states characterised by specific PhAST signatures; revealing a complexity that goes beyond the known sequential events involving (H3-H4)2 tetramer and H2A-H2B heterodimers. Such signatures localise and quantify the extent of the asymmetry of DNA/histone interactions with respect to the nucleosome dyad. This asymmetry is therefore defined by the localisation and amplitude of the signals. The localisation of the signal is consistent between assembly and disassembly and dictated by the DNA sequence. However, the amplitude component of this asymmetry not only evolves during the assembly and disassembly but does so differently between the two processes.Understanding the regulation of gene expression requires a complete knowledge of nucleosome dynamics. Our unexpected observation of differences between assembly and disassembly opens up new avenues to define the role of the DNA sequence in these processes. Overall, we provide new insights into how the intrinsic properties of DNA are integrated into a holistic mechanism that controls chromatin structure.Statement of SignificanceThis manuscript addresses the question of nucleosome dissociation compares with association. We used PhAST which is a non-intrusive photochemical technique to follow nucleosome dynamics at base pair resolution. We observed structural asymmetry during nucleosome turnover. We also showed for the first time that the process of nucleosome dissociation is not a reversal of association. This asymmetry favours intermediate states involved in chromatin organisation suggesting novel models for the role of nucleosome turnover in the epigenetic regulation of gene expression.

2018 ◽  
Vol 36 (6_suppl) ◽  
pp. 614-614 ◽  
Author(s):  
Pavlos Msaouel ◽  
Gabriel G. Malouf ◽  
Xiaoping Su ◽  
Hui Yao ◽  
Durga N Tripathi ◽  
...  

614 Background: RMC is a highly aggressive tumor with close to universal fatality despite therapy. It is almost exclusively found in young African-Americans with sickle cell trait, and is characterized by complete loss of expression of SMARCB1, a major chromatin remodeler involved in regulation of gene expression. We investigated the effects of SMARCB1 loss on mutation frequency, gene expression, and cell growth in RMC. Methods: Whole exome sequencing (WES) and RNA sequencing (RNA-seq) were performed in RMC tissues from 15 and 11 patients respectively, each with matched adjacent normal kidney tissue controls. In vitro experiments were performed in a cell line (RMC2C) we established from a patient with RMC. SMARCB1 was conditionally re-expressed using a tetracycline-inducible lentivector. Gene ontology (GO) analysis was performed using DAVID. Results: WES showed that RMC harbors a low number (median of < 25/tumor sample) of non-synonymous exomic single nucleotide variants (SNVs) or small indels. GO analysis revealed that the most significant pathways upregulated in RMC compared with normal tissue were those associated with nucleosome assembly and telomere organization (p values < 0.0001). Re-expression of SMARCB1 at near-endogenous levels suppressed the growth rate of RMC2C cells. Subsequent silencing of SMARCB1 expression restored the growth rate of these cells. RNA-seq of RMC2C cells expressing SMARCB1 demonstrated that the most significant downregulated pathways compared with SMARCB1-negative RMC2C cells were those associated with nucleosome assembly and telomere organization (p values < 0.0001). Conclusions: RMC harbors a remarkably simple genome, as evidenced by our WES analysis. Therefore, consistently detected alterations, such as SMARCB1 loss, are likely to serve as drivers for this disease. Indeed, in vitro restoration of SMARCB1 expression suppressed the growth of RMC cells and repressed genes associated with nucleosome assembly and telomere organization, identifying for the first time a causal link between loss of SMARCB1 and dysregulation of these genes. These results provide the basis for future therapeutic strategies targeting SMARCB1 loss in RMC.


2018 ◽  
Vol 19 (10) ◽  
pp. 3182 ◽  
Author(s):  
Pedro Osorio-Montalvo ◽  
Luis Sáenz-Carbonell ◽  
Clelia De-la-Peña

Somatic embryogenesis (SE) is a widely studied process due to its biotechnological potential to generate large quantities of plants in short time frames and from different sources of explants. The success of SE depends on many factors, such as the nature of the explant, the microenvironment generated by in vitro culture conditions, and the regulation of gene expression, among others. Epigenetics has recently been identified as an important factor influencing SE outcome. DNA methylation is one of the most studied epigenetic mechanisms due to its essential role in gene expression, and its participation in SE is crucial. DNA methylation levels can be modified through the use of drugs such as 5-Azacytidine (5-AzaC), an inhibitor of DNA methylation, which has been used during SE protocols. The balance between hypomethylation and hypermethylation seems to be the key to SE success. Here, we discuss the most prominent recent research on the role of 5-AzaC in the regulation of DNA methylation, highlighting its importance during the SE process. Also, the molecular implications that this inhibitor might have for the increase or decrease in the embryogenic potential of various explants are reviewed.


2005 ◽  
Vol 34 (1) ◽  
pp. 37-46 ◽  
Author(s):  
R Gruemmer ◽  
L Klein-Hitpaß ◽  
J Neulen

A precise regulation of angiogenesis is a prerequisite for an adequate maturation of ovarian follicles. Despite the production of vascular endothelial growth factor (VEGF) by granulosa cells in antral follicles, angiogenesis is restricted to the theca cell layer. The maturing follicle remains avascular before ovulation, implying regulatory mechanisms which prevent premature follicular vascularization. In order to investigate the role of follicular fluid and of granulosa cells in the regulation of endothelial gene expression, human umbilical vein endothelial cells (HUVECs) were incubated in vitro with media conditioned with human follicular fluid obtained from individual patients undergoing oocyte retrieval for in vitro fertilization procedures or with culture medium conditioned by human granulosa cells respectively. Using microarray technology, the gene expression pattern was compared between untreated monolayers of HUVECs and HUVECs treated either with follicular fluid or with granulosa cell conditioned media. We identified a total of 15 genes that were significantly up-regulated and 11 genes that were significantly down-regulated in endothelial cells treated with follicular fluid at least 2.5-fold in more than 70% of comparisons. Up-regulated genes involved in angiogenesis were the anti-angiogenic factors gro-beta (16.5-fold), angiopoietin-2 (3.9-fold), alpha-2-macroglobulin (24.3-fold) and the pro-angiogenic factors E-selectin (5.3-fold) and vascular cell adhesion molecule-1 (VCAM-1) (4.4-fold), whereas a significant down-regulation of the pro-angiogenic genes fibulin-5 (3.5-fold) and elastin (14.9-fold) could be observed. Culturing of HUVECs with conditioned medium from cultured human luteinized granulosa cells demonstrated a similar regulatory pattern of gene expression for fibulin-5, elastin, gro-beta, and E-selectin. The gene regulation in endothelial cells by follicular fluid could be confirmed by RT-PCR for gro-beta, angiopoietin-2, elastin, fibulin-5, and E-selectin. The present work reveals that compounds secreted by granulosa cells lead to the expression of anti-angiogenic factors on the transcript level in endothelial cells and thus could help to explain the temporal and spatial discrepancy between the high expression of VEGF and the restricted angiogenesis in the preovulatory follicle.


2011 ◽  
Vol 300 (3) ◽  
pp. L441-L452 ◽  
Author(s):  
Taketomo Kido ◽  
Takeshi Tomita ◽  
Minoru Okamoto ◽  
Yan Cai ◽  
Yoshimi Matsumoto ◽  
...  

Secretoglobin (SCGB) 1A1, also called Clara cell secretor protein (CCSP) or Clara cell-specific 10-kDa protein (CC10), is a small molecular weight secreted protein mainly expressed in lung, with anti-inflammatory/immunomodulatory properties. Previous in vitro studies demonstrated that CCAAT/enhancer-binding proteins (C/EBPs) are the major transcription factors for the regulation of Scbg1a1 gene expression, whereas FOXA1 had a minimum effect on the transcription. To determine the in vivo role of C/EBPs in the regulation of SCGB1A1 expression, experiments were performed in which A-C/EBP, a dominant-negative form of C/EBP that interferes with DNA binding activities of all C/EBPs, was specifically expressed in lung. Surprisingly, despite the in vitro findings, expression of SCGB1A1 mRNA was not decreased in vivo in the absence of C/EBPs. This may be due to a compensatory role assumed by FOXA1 in the regulation of Scgb1a1 gene expression in lung in the absence of active C/EBPs. This disconnect between in vitro and in vivo results underscores the importance of studies using animal models to determine the role of specific transcription factors in the regulation of gene expression in intact multicellular complex organs such as lung.


Author(s):  
Eva Jablonka ◽  
Zohar Bronfman

Behavioral epigenetics is part of the thriving field of epigenetics, which describes the study of developmental processes that lead to persistent changes in the states of organisms, their components, and their lineages. Such developmental, context-sensitive changes are mediated by epigenetic mechanisms that establish and maintain the changes in patterns of gene expression and cellular structures that occur during ontogeny in both nondividing cells, such as most mature neurons, and dividing cells such as stem cells. When information is vertically transmitted to cells during cell division, or horizontally between cells through migrating reproducing molecules (like small RNAs), and when variations in the transmitted information are not determined by variations in DNA sequence (i.e., the same DNA sequence has more than one cell-heritable epigenetic state), epigenetic inheritance is said to occur. Behavioral epigenetics investigates the role of behavior in the shaping of developmental epigenetic states and the reciprocal role of epigenetic factors and mechanisms in the shaping of the behavior of human and nonhuman animals, at the short-, middle-, and long-term (ontogenetic, ecological, and evolutionary) time scales. The focus is on the molecular-epigenetic study of the interactions between environmental factors, such as ecological factors and habitual activities such as lifestyles and learning, with genetic variation and the neurobiological and physiological mechanisms that mediate between the regulation of gene expression and behavior. This range of epigenetic processes therefore includes, but is not limited to, studies involving epigenetic inheritance and the direct and indirect evolutionary effects of epigenetic developmental mechanisms. The neural-behavioral aspects that occur during ontogeny through the mediation of epigenetic mechanisms are central to behavioral epigenetics and are the main focus of neural epigenetics.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jie Yu ◽  
Peiwei Chai ◽  
Minyue Xie ◽  
Shengfang Ge ◽  
Jing Ruan ◽  
...  

Abstract Background Histone lactylation, a metabolic stress-related histone modification, plays an important role in the regulation of gene expression during M1 macrophage polarization. However, the role of histone lactylation in tumorigenesis remains unclear. Results Here, we show histone lactylation is elevated in tumors and is associated with poor prognosis of ocular melanoma. Target correction of aberrant histone lactylation triggers therapeutic efficacy both in vitro and in vivo. Mechanistically, histone lactylation contributes to tumorigenesis by facilitating YTHDF2 expression. Moreover, YTHDF2 recognizes the m6A modified PER1 and TP53 mRNAs and promotes their degradation, which accelerates tumorigenesis of ocular melanoma. Conclusion We reveal the oncogenic role of histone lactylation, thereby providing novel therapeutic targets for ocular melanoma therapy. We also bridge histone modifications with RNA modifications, which provides novel understanding of epigenetic regulation in tumorigenesis.


Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


Sign in / Sign up

Export Citation Format

Share Document