scholarly journals Regulation of gene expression in endothelial cells: the role of human follicular fluid

2005 ◽  
Vol 34 (1) ◽  
pp. 37-46 ◽  
Author(s):  
R Gruemmer ◽  
L Klein-Hitpaß ◽  
J Neulen

A precise regulation of angiogenesis is a prerequisite for an adequate maturation of ovarian follicles. Despite the production of vascular endothelial growth factor (VEGF) by granulosa cells in antral follicles, angiogenesis is restricted to the theca cell layer. The maturing follicle remains avascular before ovulation, implying regulatory mechanisms which prevent premature follicular vascularization. In order to investigate the role of follicular fluid and of granulosa cells in the regulation of endothelial gene expression, human umbilical vein endothelial cells (HUVECs) were incubated in vitro with media conditioned with human follicular fluid obtained from individual patients undergoing oocyte retrieval for in vitro fertilization procedures or with culture medium conditioned by human granulosa cells respectively. Using microarray technology, the gene expression pattern was compared between untreated monolayers of HUVECs and HUVECs treated either with follicular fluid or with granulosa cell conditioned media. We identified a total of 15 genes that were significantly up-regulated and 11 genes that were significantly down-regulated in endothelial cells treated with follicular fluid at least 2.5-fold in more than 70% of comparisons. Up-regulated genes involved in angiogenesis were the anti-angiogenic factors gro-beta (16.5-fold), angiopoietin-2 (3.9-fold), alpha-2-macroglobulin (24.3-fold) and the pro-angiogenic factors E-selectin (5.3-fold) and vascular cell adhesion molecule-1 (VCAM-1) (4.4-fold), whereas a significant down-regulation of the pro-angiogenic genes fibulin-5 (3.5-fold) and elastin (14.9-fold) could be observed. Culturing of HUVECs with conditioned medium from cultured human luteinized granulosa cells demonstrated a similar regulatory pattern of gene expression for fibulin-5, elastin, gro-beta, and E-selectin. The gene regulation in endothelial cells by follicular fluid could be confirmed by RT-PCR for gro-beta, angiopoietin-2, elastin, fibulin-5, and E-selectin. The present work reveals that compounds secreted by granulosa cells lead to the expression of anti-angiogenic factors on the transcript level in endothelial cells and thus could help to explain the temporal and spatial discrepancy between the high expression of VEGF and the restricted angiogenesis in the preovulatory follicle.

2021 ◽  
Author(s):  
Jozsef Bodis ◽  
Endre Sulyok ◽  
Akos Varnagy ◽  
Viktória Prémusz ◽  
Krisztina Godony ◽  
...  

Abstract BackgroundThis observational clinical study evaluated the expression levels and predictive values of some apoptosis-related genes in granulosa cells (GCs) and follicular fluid (FF) of women undergoing in vitro fertilization (IVF).Methods GCs and FF were obtained at oocyte retrieval from 31 consecutive patients with heterogeneous infertility diagnosis (age: 34.3±5.8 years, body mass index: 24.02±3.12 kg/m2, duration of infertility: 4.2±2.1 years). mRNA expression of pro-apoptotic (BAX, CASP3, CASP8) and anti-apoptotic (BCL2, AMH, AMHR, FSHR, LHR, CYP19A1) factors was determined by quantitative RT-PCR using ROCHE LightCycler 480. Results No significant difference in GC or FF mRNA expression of pro- and anti-apoptotic factors could be demonstrated between IVF patients with (9 patients) or without (22 patients) clinical pregnancy. Each transcript investigated was detected in FF, but their levels were markedly reduced and independent of those in GCs. The number of retrieved oocytes was positively associated with GC AMHR (r=0.393, p=0.029), but the day of embryo transfer was negatively associated with GC LHR (r=-0.414, p=0.020) and GC FSHR transcripts (r=-0.535, p=0.002). When pregnancy positive group was analysed separately the impact of apoptosis- related gene expressions on some selected measures of IVF success could be observed. Strong positive relationship was found between gene expression levels of pro- and anti-apoptotic factors in GCs.ConclusionOur study provides only marginal evidences for the apoptosis dependence of IVF outcome and suggests that the apoptosis process induces adaptive increases of the anti-apoptotic gene expression to attenuate apoptosis and to protect cell survival.


2018 ◽  
Vol 19 (10) ◽  
pp. 3182 ◽  
Author(s):  
Pedro Osorio-Montalvo ◽  
Luis Sáenz-Carbonell ◽  
Clelia De-la-Peña

Somatic embryogenesis (SE) is a widely studied process due to its biotechnological potential to generate large quantities of plants in short time frames and from different sources of explants. The success of SE depends on many factors, such as the nature of the explant, the microenvironment generated by in vitro culture conditions, and the regulation of gene expression, among others. Epigenetics has recently been identified as an important factor influencing SE outcome. DNA methylation is one of the most studied epigenetic mechanisms due to its essential role in gene expression, and its participation in SE is crucial. DNA methylation levels can be modified through the use of drugs such as 5-Azacytidine (5-AzaC), an inhibitor of DNA methylation, which has been used during SE protocols. The balance between hypomethylation and hypermethylation seems to be the key to SE success. Here, we discuss the most prominent recent research on the role of 5-AzaC in the regulation of DNA methylation, highlighting its importance during the SE process. Also, the molecular implications that this inhibitor might have for the increase or decrease in the embryogenic potential of various explants are reviewed.


2007 ◽  
Vol 82 (4) ◽  
pp. 1759-1776 ◽  
Author(s):  
Ramu Sivakumar ◽  
Neelam Sharma-Walia ◽  
Hari Raghu ◽  
Mohanan Valiya Veettil ◽  
Sathish Sadagopan ◽  
...  

ABSTRACT Kaposi's sarcoma (KS), a vascular tumor associated with human immunodeficiency virus type 1 infection, is characterized by spindle-shaped endothelial cells, inflammatory cells, cytokines, growth and angiogenic factors, and angiogenesis. KS spindle cells are believed to be of the lymphatic endothelial cell (LEC) type. Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8) is etiologically linked to KS, and in vitro KSHV infection of primary human dermal microvascular endothelial cells (HMVEC-d) is characterized by the induction of preexisting host signal cascades, sustained expression of latency-associated genes, transient expression of a limited number of lytic genes, sustained induction of NF-κB and several cytokines, and growth and angiogenic factors. KSHV induced robust vascular endothelial growth factor A (VEGF-A) and VEGF-C gene expression as early as 30 min postinfection (p.i.) in serum-starved HMVEC-d, which was sustained throughout the observation period of 72 h p.i. Significant amounts of VEGF-A and -C were also detected in the culture supernatant of infected cells. VEGF-A and -C were also induced by UV-inactivated KSHV and envelope glycoprotein gpK8.1A, thus suggesting a role for virus entry stages in the early induction of VEGF and requirement of KSHV viral gene expression for sustained induction. Exogenous addition of VEGF-A and -C increased KSHV DNA entry into target cells and moderately increased latent ORF73 and lytic ORF50 promoter activation and gene expression. KSHV infection also induced the expression of lymphatic markers Prox-1 and podoplanin as early as 8 h p.i., and a paracrine effect was seen in the neighboring uninfected cells. Similar observations were also made in the pure blood endothelial cell (BEC)-TIME cells, thus suggesting that commitment to the LEC phenotype is induced early during KSHV infection of blood endothelial cells. Treatment with VEGF-C alone also induced Prox-1 expression in the BEC-TIME cells. Collectively, these studies show that the in vitro microenvironments of KSHV-infected endothelial cells are enriched, with VEGF-A and -C molecules playing key roles in KSHV biology, such as increased infection and gene expression, as well as in angiogenesis and lymphangiogenesis, thus recapitulating the microenvironment of early KS lesions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
József Bódis ◽  
Endre Sulyok ◽  
Ákos Várnagy ◽  
Viktória Prémusz ◽  
Krisztina Gödöny ◽  
...  

Abstract Background This observational clinical study evaluated the expression levels and predictive values of some apoptosis-related genes in granulosa cells (GCs) and follicular fluid (FF) of women undergoing in vitro fertilization (IVF). Methods GCs and FF were obtained at oocyte retrieval from 31 consecutive patients with heterogeneous infertility diagnosis (age: 34.3 ± 5.8 years, body mass index: 24.02 ± 3.12 kg/m2, duration of infertility: 4.2 ± 2.1 years). mRNA expression of pro-apoptotic (BAX, CASP3, CASP8) and anti-apoptotic (BCL2, AMH, AMHR, FSHR, LHR, CYP19A1) factors was determined by quantitative RT-PCR using ROCHE LightCycler 480. Results No significant difference in GC or FF mRNA expression of pro- and anti-apoptotic factors could be demonstrated between IVF patients with (9 patients) or without (22 patients) clinical pregnancy. Each transcript investigated was detected in FF, but their levels were markedly reduced and independent of those in GCs. The number of retrieved oocytes was positively associated with GC AMHR (r = 0.393, p = 0.029), but the day of embryo transfer was negatively associated with GC LHR (r = − 0.414, p = 0.020) and GC FSHR transcripts (r = − 0.535, p = 0.002). When pregnancy positive group was analysed separately the impact of apoptosis- related gene expressions on some selected measures of IVF success could be observed. Strong positive relationship was found between gene expression levels of pro- and anti-apoptotic factors in GCs. Conclusion Our study provides only marginal evidences for the apoptosis dependence of IVF outcome and suggests that the apoptosis process induces adaptive increases of the anti-apoptotic gene expression to attenuate apoptosis and to protect cell survival.


Endocrinology ◽  
2021 ◽  
Author(s):  
Pavine L C Lefèvre ◽  
Thomas C Nardelli ◽  
Weon-Young Son ◽  
Amy R Sadler ◽  
Dorothea F K Rawn ◽  
...  

Abstract Polybrominated diphenyl ethers (PBDEs), a major class of flame retardants incorporated into numerous consumer products, leach out into dust resulting in widespread exposure. There is evidence from in vitro and in vivo animal studies that PBDEs affect ovarian granulosa cell function and follicular development, yet human studies of their association with female infertility are inconclusive. Here, we tested the hypothesis that exposure to the PBDEs in follicular fluid is associated with dysregulation of gene expression in the mural and cumulus granulosa cells collected from women undergoing in vitro fertilization by intracytoplasmic sperm injection. The median concentration of the ∑10PBDEs detected in the follicular fluid samples (n=37) was 15.04 pg/g wet weight. RNA microarray analyses revealed that many genes were differentially expressed in mural and cumulus granulosa cells. Highest vs. lowest quartile exposure to the Σ10PBDEs or to two predominant PBDE congeners, BDE-47 or BDE-153, was associated with significant effects on gene expression in both cell types. Mural granulosa cells were generally more sensitive to PBDE exposure compared to cumulus cells. Overall, gene expression changes associated with BDE-47 exposure were similar to those for ∑10PBDEs but distinct from those associated with BDE-153 exposure. Interestingly, exposure to BDE-47 and ∑10PBDEs activated the expression of genes in pathways that are important in innate immunity and inflammation. To the best of our knowledge, this is the first demonstration that exposure to these environmental chemicals is associated with the dysregulation of pathways that play an essential role in ovulation.


2020 ◽  
Author(s):  
A. Hatakeyama ◽  
R. Retureau ◽  
M. Pasi ◽  
B. Hartmann ◽  
C. Nogues ◽  
...  

AbstractNucleosome assembly and disassembly play a central role in the regulation of gene expression. Here we use PhAST (Photochemical Analysis of Structural Transitions) to monitor at the base pair level, structural alterations induced all along DNA upon histone binding or release. By offering the first consistent, detailed comparison of nucleosome assembly and disassembly in vitro, we are able to reveal similarities and differences between the two processes. We identify multiple intermediate states characterised by specific PhAST signatures; revealing a complexity that goes beyond the known sequential events involving (H3-H4)2 tetramer and H2A-H2B heterodimers. Such signatures localise and quantify the extent of the asymmetry of DNA/histone interactions with respect to the nucleosome dyad. This asymmetry is therefore defined by the localisation and amplitude of the signals. The localisation of the signal is consistent between assembly and disassembly and dictated by the DNA sequence. However, the amplitude component of this asymmetry not only evolves during the assembly and disassembly but does so differently between the two processes.Understanding the regulation of gene expression requires a complete knowledge of nucleosome dynamics. Our unexpected observation of differences between assembly and disassembly opens up new avenues to define the role of the DNA sequence in these processes. Overall, we provide new insights into how the intrinsic properties of DNA are integrated into a holistic mechanism that controls chromatin structure.Statement of SignificanceThis manuscript addresses the question of nucleosome dissociation compares with association. We used PhAST which is a non-intrusive photochemical technique to follow nucleosome dynamics at base pair resolution. We observed structural asymmetry during nucleosome turnover. We also showed for the first time that the process of nucleosome dissociation is not a reversal of association. This asymmetry favours intermediate states involved in chromatin organisation suggesting novel models for the role of nucleosome turnover in the epigenetic regulation of gene expression.


2011 ◽  
Vol 300 (3) ◽  
pp. L441-L452 ◽  
Author(s):  
Taketomo Kido ◽  
Takeshi Tomita ◽  
Minoru Okamoto ◽  
Yan Cai ◽  
Yoshimi Matsumoto ◽  
...  

Secretoglobin (SCGB) 1A1, also called Clara cell secretor protein (CCSP) or Clara cell-specific 10-kDa protein (CC10), is a small molecular weight secreted protein mainly expressed in lung, with anti-inflammatory/immunomodulatory properties. Previous in vitro studies demonstrated that CCAAT/enhancer-binding proteins (C/EBPs) are the major transcription factors for the regulation of Scbg1a1 gene expression, whereas FOXA1 had a minimum effect on the transcription. To determine the in vivo role of C/EBPs in the regulation of SCGB1A1 expression, experiments were performed in which A-C/EBP, a dominant-negative form of C/EBP that interferes with DNA binding activities of all C/EBPs, was specifically expressed in lung. Surprisingly, despite the in vitro findings, expression of SCGB1A1 mRNA was not decreased in vivo in the absence of C/EBPs. This may be due to a compensatory role assumed by FOXA1 in the regulation of Scgb1a1 gene expression in lung in the absence of active C/EBPs. This disconnect between in vitro and in vivo results underscores the importance of studies using animal models to determine the role of specific transcription factors in the regulation of gene expression in intact multicellular complex organs such as lung.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 132-133
Author(s):  
Dawit Tesfaye

Abstract Environmental heat stress negatively affects the fertility of dairy cows by disrupting reproductive processes spanning from follicular development to maternal recognition of pregnancy. Investigation of cellular level responses to stress would contribute to the understanding of the mechanism behind survival responses. Extracellular vesicles (EVs), which carry biologically active signaling molecules, are reported to play a significant role in the cellular response to stress. They are produced by almost all types of cells and abundantly present in various biological fluids including follicular fluid, oviductal fluid, uterine fluids in vivo, and in spent culture media in vitro. Those EV-coupled molecular signals in biological fluids are indicative of the physiological status of the cells of their origin. This has been evidenced by the presence of EV-mediated miRNA signals in follicular fluid associated with the metabolic status of cows. Recent studies revealed the potential role of follicular fluid EVs in carrying molecular signals which can reverse or protect the damage incurred by heat stress in bovine oocytes. In addition to cellular defense responses (activation of HSP70 and HSP90, NRF2 and GRP78 & 94), bovine granulosa cells exposed to heat stress in vitro released EVs enriched with selected mRNA (HSP90 and SOD1) and miRNAs. Among others, miR-1246, miR-374a, and miR-2904 were found to be enriched in EVs released from granulosa cells exposed to thermal stress. Those miRNAs were found to regulate pathways related to heat and endoplasmic reticulum stress responses. The priming of recipient bovine granulosa cells by EVs derived from heat-stressed granulosa cells induced tolerance against recurrent heat stress. Collectively, EV-mediated molecular signals would provide another layer of cell-to-cell communication and deliver protective signals against oxidative stress to recipient cells. This would provide opportunities for future potential application of EVs in tackling oxidative stress-associated fertility problems in humans and animals.


Sign in / Sign up

Export Citation Format

Share Document