scholarly journals CHOP-c-JUN complex plays a critical role in liver proteotoxicity induced by mutant Z alpha-1 antitrypsin

2020 ◽  
Author(s):  
Sergio Attanasio ◽  
Gwladys Gernoux ◽  
Rosa Ferriero ◽  
Rossella De Cegli ◽  
Annamaria Carissimo ◽  
...  

ABSTRACTAlpha-1 antitrypsin (AAT) deficiency is a common genetic disorder with lung and liver involvement. Most patients carry the Z allele in SERPINA1 that encodes a mutant AAT (ATZ) forming hepatotoxic polymers. We found CHOP upregulation and activation in both mouse (PiZ) and human livers expressing ATZ. Compared to controls, juvenile PiZ/Chop-/- mice showed reduction in hepatic ATZ and transcriptional response to endoplasmic reticulum stress, as consequence of CHOP-mediated increase of SERPINA1 transcription. CHOP was found to upregulate SERPINA1 though binding with c-JUN on SERPINA1 regulatory elements, thus aggravating hepatic accumulation of ATZ. Increased CHOP levels were detected in diseased livers of children homozygous for the Z allele.Compared to adults, AAT deficiency in infants has different severity and prognosis. Based on our findings, CHOP-c-JUN complex upregulates SERPINA1 transcription and play an important role in the hepatic disease pathogenesis by increasing the burden of proteotoxic ATZ, particularly in the pediatric population.

2020 ◽  
Vol 295 (38) ◽  
pp. 13213-13223
Author(s):  
Sergio Attanasio ◽  
Rosa Ferriero ◽  
Gwladys Gernoux ◽  
Rossella De Cegli ◽  
Annamaria Carissimo ◽  
...  

α1-Antitrypsin (AAT) encoded by the SERPINA1 gene is an acute-phase protein synthesized in the liver and secreted into the circulation. Its primary role is to protect lung tissue by inhibiting neutrophil elastase. The Z allele of SERPINA1 encodes a mutant AAT, named ATZ, that changes the protein structure and leads to its misfolding and polymerization, which cause endoplasmic reticulum (ER) stress and liver disease through a gain-of-function toxic mechanism. Hepatic retention of ATZ results in deficiency of one of the most important circulating proteinase inhibitors and predisposes to early-onset emphysema through a loss-of-function mechanism. The pathogenetic mechanisms underlying the liver disease are not completely understood. C/EBP-homologous protein (CHOP), a transcription factor induced by ER stress, was found among the most up-regulated genes in livers of PiZ mice that express ATZ and in human livers of patients homozygous for the Z allele. Compared with controls, juvenile PiZ/Chop−/− mice showed reduced hepatic ATZ and a transcriptional response indicative of decreased ER stress by RNA-Seq analysis. Livers of PiZ/Chop−/− mice also showed reduced SERPINA1 mRNA levels. By chromatin immunoprecipitations and luciferase reporter–based transfection assays, CHOP was found to up-regulate SERPINA1 cooperating with c-JUN, which was previously shown to up-regulate SERPINA1, thus aggravating hepatic accumulation of ATZ. Increased CHOP levels were detected in diseased livers of children homozygous for the Z allele. In summary, CHOP and c-JUN up-regulate SERPINA1 transcription and play an important role in hepatic disease by increasing the burden of proteotoxic ATZ, particularly in the pediatric population.


1995 ◽  
Vol 15 (7) ◽  
pp. 3960-3968 ◽  
Author(s):  
D H Schwyter ◽  
J D Huang ◽  
T Dubnicoff ◽  
A J Courey

The Drosophila melanogaster decapentaplegic (dpp) gene encodes a transforming growth factor beta-related cell signaling molecule that plays a critical role in dorsal/ventral pattern formation. The dpp expression pattern in the Drosophila embryo is dynamic, consisting of three phases. Phase I, in which dpp is expressed in a broad dorsal domain, depends on elements in the dpp second intron that interact with the Dorsal transcription factor to repress transcription ventrally. In contrast, phases II and III, in which dpp is expressed first in broad longitudinal stripes (phase II) and subsequently in narrow longitudinal stripes (phase III), depend on multiple independent elements in the dpp 5'-flanking region. Several aspects of the normal dpp expression pattern appear to depend on the unique properties of the dpp core promoter. For example, this core promoter (extending from -22 to +6) is able to direct a phase II expression pattern in the absence of additional upstream or downstream regulatory elements. In addition, a ventral-specific enhancer in the dpp 5'-flanking region that binds the Dorsal factor activates the heterologous hsp70 core promoter but not the dpp core promoter. Thus, the dpp core promoter region may contribute to spatially regulated transcription both by interacting directly with spatially restricted activators and by modifying the activity of proteins bound to enhancer elements.


2021 ◽  
Vol 14 (3) ◽  
pp. e240288
Author(s):  
Gabriela F Santos ◽  
Paul Ellis ◽  
Daniela Farrugia ◽  
Alice M Turner

We report a 64-year-old caucasian woman diagnosed with membranous nephropathy secondary to alpha-1 antitrypsin deficiency (AATD). AATD is a rare autosomal codominant genetic disorder. Its clinical manifestations are mostly observed in the lungs, with early-onset emphysema. Nephropathy due to AATD is still very rare and only a few cohort studies have been reported. It has been recognised that alpha-1 antitrypsin has a protective role in the kidneys which enhances the possibility of development of kidney failure, such as nephrotic syndrome, in cases of AATD. Further clinical investigation is needed to understand the relationship between the development of nephropathy, namely membranous nephropathy, and AATD.


2010 ◽  
Vol 299 (4) ◽  
pp. G844-G854 ◽  
Author(s):  
Rineke H. G. Steenbergen ◽  
Michael A. Joyce ◽  
Garry Lund ◽  
Jamie Lewis ◽  
Ran Chen ◽  
...  

Although multiple determinants for hepatitis C virus (HCV) infection are known, it remains partly unclear what determines the human specificity of HCV infection. Presumably, the presence of appropriate entry receptors is essential, and this may explain why HCV is unable to infect nonhuman hepatocytes. However, using mice with chimeric human livers, we show in this study that the presence of human hepatocytes, and therefore human entry receptors, is not sufficient for HCV infection. In successfully transplanted SCID/Alb-uPA mice, infection with HCV is reliable only when ∼70–80% of the liver consists of human hepatocytes. We show that chimeric mice, which are hard to infect with HCV, have significant groups of human hepatocytes that are readily infected with hepatitis B virus. Thus it is unlikely that the lack of infection with HCV can simply be attributed to low hepatocyte numbers. We investigated whether the humanization of lipoprotein profiles is positively associated with infection success. We show that the lipoprotein profiles of chimeric mice become more human-like at high levels of engraftment of human hepatocytes. This and expression of markers of human lipoprotein biosynthesis, human apolipoprotein B (ApoB) and cholesterol ester transfer protein (CETP), show a strong positive correlation with successful infection. Association of HCV in the blood of chimeric mice to ApoB-containing lipoproteins is comparable to association of HCV in patient serum and provides further support for a critical role for ApoB-containing lipoproteins in the infectious cycle of HCV. Our data suggest that the weakest link in the HCV infection chain does not appear to be the presence of human hepatocytes per se. We believe that HCV infection also depends on the presence of sufficient levels of human lipoproteins.


2016 ◽  
Author(s):  
Gabrielle Crisp ◽  
Ohn Nyunt ◽  
Lisa Chopin ◽  
Inge Seim ◽  
Mark Harris ◽  
...  

AbstractPrader-Willi Syndrome (PWS) is a complex genetic disorder characterized by developmental and growth abnormalities, insatiable appetite, and excessive eating (hyperphagia). The underlying cause of hyperphagia in PWS is currently unknown, however, elevated levels of the peptide hormone ghrelin is believed to contribute. Recently, ghrelin-reactive autoantibodies (isotype IgG) were identified in non-genetic obesity. These autoantibodies act as ghrelin carrier proteins and potentiate its orexigenic effects. Here, we describe the identification of ghrelin-reactive autoantibodies in a cohort of 16 children with PWS. In comparison to unaffected siblings, autoantibody levels are significantly increased in PWS children. We further show that autoantibody levels are unaffected by food intake, unlike plasma ghrelin which declines postprandially in both groups. Critically, we also demonstrate that the autoantibodies bind the major circulating ghrelin isoforms, unacylated ghrelin, which does not stimulate appetite, and the orexigen acylated ghrelin. In excess, unacylated ghrelin may compete with acylated ghrelin for autoantibody binding. Taken together, this is the first report on ghrelin-reactive antibodies in a pediatric population, and the first to demonstrate that the antibodies do not discriminate between orexigenic and non-orexigenic ghrelin isoforms. Our work suggests that ghrelin autoantibodies can be targeted using non-orexigenic forms of ghrelin, thereby providing a novel therapeutic target for PWS and for obesity in general.


2021 ◽  
Author(s):  
John T Walker ◽  
Diane C Saunders ◽  
Vivek Rai ◽  
Chunhua Dai ◽  
Peter Orchard ◽  
...  

A hallmark of type 2 diabetes (T2D), a major cause of world-wide morbidity and mortality, is dysfunction of insulin-producing pancreatic islet β cells. T2D genome-wide association studies (GWAS) have identified hundreds of signals, mostly in the non-coding genome and overlapping β cell regulatory elements, but translating these into biological mechanisms has been challenging. To identify early disease-driving events, we performed single cell spatial proteomics, sorted cell transcriptomics, and assessed islet physiology on pancreatic tissue from short-duration T2D and control donors. Here, through integrative analyses of these diverse modalities, we show that multiple gene regulatory modules are associated with early-stage T2D β cell-intrinsic defects. One notable example is the transcription factor RFX6, which we show is a highly connected β cell hub gene that is reduced in T2D and governs a gene regulatory network associated with insulin secretion defects and T2D GWAS variants. We validated the critical role of RFX6 in β cells through direct perturbation in primary human islets followed by physiological and single nucleus multiome profiling, which showed reduced dynamic insulin secretion and large-scale changes in the β cell transcriptome and chromatin accessibility landscape. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs, and individuals and thus we anticipate this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits with GWAS data.


1994 ◽  
Vol 14 (2) ◽  
pp. 1084-1094
Author(s):  
Z Hanna ◽  
C Simard ◽  
A Laperrière ◽  
P Jolicoeur

The CD4 protein plays a critical role in the development and function of the immune system. To gain more insight into the mechanism of expression of the human CD4 gene, we cloned 42.2 kbp of genomic sequences comprising the CD4 gene and its surrounding sequences. Studies with transgenic mice revealed that a 12.6-kbp fragment of the human CD4 gene (comprising 2.6 kbp of 5' sequences upstream of the transcription initiation site, the first two exons and introns, and part of exon 3) contains the sequences required to support the appropriate expression in murine mature CD4+ CD8- T cells and macrophages but not in immature double-positive CD4+ CD8+ T cells. Expression in CD4+ CD8+ T cells was found to require additional regulatory elements present in a T-cell enhancer fragment recently identified for the murine CD4 gene (S. Sawada and D. R. Littman, Mol. Cell. Biol. 11:5506-5515, 1991). These results suggest that expression of CD4 in mature and immature T-cell subsets may be controlled by distinct and independent regulatory elements. Alternatively, specific regulatory elements may control the expression of CD4 at different levels in mature and immature T-cell subsets. Our data also indicate that mouse macrophages contain the regulatory factors necessary to transcribe the human CD4 gene.


2020 ◽  
Author(s):  
Divya Kattupalli ◽  
Asha Sriniva ◽  
Soniya E V

Abstract Background: Black pepper is a prominent spice which is an indispensable ingredient in culinary and traditional medicine. Phytophthora capsici, the causative agent of foot rot disease causes drastic constraint in black pepper cultivation and productivity. To counterattack various biotic and abiotic stresses plants employ a broad array of mechanisms one such includes the accumulation of pathogenesis-related (PR) proteins. Several studies have reported the role of PR-1 proteins in triggering the plant defenses during plant-oomycete interaction.Results: Through the genome-wide survey, eleven PR-1 genes that belongs to a CAP superfamily protein with Caveolin-Binding Motif (CBM) and CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR1 homologs differ in their signal peptide motifs, and core amino acid sequence composition in the functional protein domains. The GO, biological function analysis reveals their role in defense responses and response to biotic stimulus whereas the KEGG functional annotation predicted their function in the plant-pathogen interactions. Furthermore, transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to P. nigrum - P. capsici interaction pathway. The differentially expressed pathogen-responsive PR-1 gene was validated through qRT-PCR. Subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes.Conclusion: This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum - P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards P. capsici infection in Panniyur-1 plants.


2018 ◽  
Vol 115 (9) ◽  
pp. 2144-2149 ◽  
Author(s):  
Jonathan D. Brown ◽  
Zachary B. Feldman ◽  
Sean P. Doherty ◽  
Jaime M. Reyes ◽  
Peter B. Rahl ◽  
...  

Developmental transitions are guided by master regulatory transcription factors. During adipogenesis, a transcriptional cascade culminates in the expression of PPARγ and C/EBPα, which orchestrate activation of the adipocyte gene expression program. However, the coactivators controlling PPARγ and C/EBPα expression are less well characterized. Here, we show the bromodomain-containing protein, BRD4, regulates transcription of PPARγ and C/EBPα. Analysis of BRD4 chromatin occupancy reveals that induction of adipogenesis in 3T3L1 fibroblasts provokes dynamic redistribution of BRD4 to de novo super-enhancers proximal to genes controlling adipocyte differentiation. Inhibition of the bromodomain and extraterminal domain (BET) family of bromodomain-containing proteins impedes BRD4 occupancy at these de novo enhancers and disrupts transcription of Pparg and Cebpa, thereby blocking adipogenesis. Furthermore, silencing of these BRD4-occupied distal regulatory elements at the Pparg locus by CRISPRi demonstrates a critical role for these enhancers in the control of Pparg gene expression and adipogenesis in 3T3L1s. Together, these data establish BET bromodomain proteins as time- and context-dependent coactivators of the adipocyte cell state transition.


Author(s):  
Е.А. Ларшина ◽  
Н.В. Милованова ◽  
Е.А. Каменец

Недостаточность альфа-1-антитрипсина - наследственное заболевание, характеризующееся низким уровнем белка альфа-1-антитрипсина (A1AT) в крови. В основном дефицит A1AT проявляется в виде хронической обструктивной болезни легких (ХОБЛ), эмфиземы, а также поражения печени и сосудов. А1АТ является главным ингибитором сериновых протеаз в крови человека. Недостаточность А1АТ обусловлена мутациями в гене SERPINA1. Наиболее распространенными аллельными вариантами в гене SERPINA1 являются S (p.Glu288Val) и Z (р.Glu366Lys), однако в клинической практике большинство случаев тяжелого дефицита А1АТ связаны с генотипом PIZZ. У пациентов с PIZZ патология легких представляет собой фенотип «потери функции», так как дефицит A1AT приводит к ускоренному разрушению паренхимы легких, приводящему к эмфиземе. При Z-мутации 85% синтезированного белка блокируется в гепатоцитах из-за неправильного сворачивания и полимеризации. Накопление полимеризованного белка в эндоплазматической сети гепатоцитов в свою очередь приводит к хроническим заболеваниям печени у некоторых пациентов: циррозу и злокачественным новообразованиям печени. Дефицит А1АТ является довольно распространенным заболеванием, но выявляется лишь незначительная часть лиц с данной патологией. Недостаточность А1АТ зачастую ошибочно диагностируется как ХОБЛ, бронхиальная астма или криптогенное заболевание печени. Задержка в установлении диагноза составляет обычно более 5 лет (в среднем около 8 лет) что, как правило, связано с плохой осведомленностью врачей, недооценкой его распространенности и вариабельностью клинических проявлений. В настоящее время для лечения дефицита А1АТ с легочными проявлениями возможно применение аугментационной терапии, основанной на внутривенном введении очищенного человеческого А1АТ. Также активно ведется поиск новых препаратов, способных улучшить прогноз у пациентов с патологией печени. Современные подходы в лечении дефицита А1АТ, сосредоточенные на генной терапии, становятся перспективным направлением в лечении как легочной, так и печеночной патологии при дефиците А1АТ. Alpha-1 antitrypsin deficiency is a genetic disorder characterized by low level of alfa-1-antitripsin protein (A1AT) in the blood. Usually, A1AT deficiency results in chronic obstructive pulmonary disease (COPD), emphysemas, liver disease and vessels damaging. A1AT is the main inhibitor of serine proteases in human blood. A1AT deficiency is caused by mutations in the gene SERPINA1. The most common SERPINA1 allelic variants are S (p.Glu288Val) and Z (p.Glu366Lys). However, the most of documented severe cases of A1AD are associated with PIZZ genotype. PIZZ genotype patients have loss-of-function phenotype due to accelerated lung parenchyma destruction resulting in emphysema. Z mutation genotype leads to blocking of 85% synthesized protein in hepatocytes due to wrong folding and polymerization. Accumulation of the bodied protein in hepatocytes endoplasmic reticulum results in chronic liver disease, cirrhosis and other liver pathologies. A1AT deficiency is a common disorder, however, this diagnosis is established in a small part of the patients. A1AT deficiency is often misdiagnosed as COPD, asthma or сryptogenic liver disease. Usually, due to underestimating the prevalence of the disease and its unspecific symptoms, the diagnosis delay is more than 5 years (on average about 8 years). Nowadays it is possible to treat lung form of A1AT deficiency used the augmentation therapy, that bases on intravenous infusions of pure human A1AT. Also, the active development of new drugs to improve the prognosis in the patients with liver pathology is ongoing. Modern approaches of A1AT deficiency treatment, focused on gene therapy, are becoming a promising direction in the managing of both pulmonary and hepatic pathology with A1AT deficiency.


Sign in / Sign up

Export Citation Format

Share Document