scholarly journals MINPP1 prevents intracellular accumulation of the cation chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia

2020 ◽  
Author(s):  
Ekin Ucuncu ◽  
Karthyayani Rajamani ◽  
Miranda S.C. Wilson ◽  
Daniel Medina-Cano ◽  
Nami Altin ◽  
...  

ABSTRACTInositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol polyphosphate phosphatase 1 gene (MINPP1). Patients were found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We found that patient-derived and genome edited MINPP1-/- induced pluripotent stem cells (iPSCs) are not able to differentiate efficiently into neurons. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakiphosphate (IP6), detected in HEK293, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ekin Ucuncu ◽  
Karthyayani Rajamani ◽  
Miranda S. C. Wilson ◽  
Daniel Medina-Cano ◽  
Nami Altin ◽  
...  

AbstractInositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1−/− induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Frauke Ackermann ◽  
Kay Oliver Schink ◽  
Christine Bruns ◽  
Zsuzsanna Izsvák ◽  
F Kent Hamra ◽  
...  

Loss of function of the active zone protein Piccolo has recently been linked to a disease, Pontocerebellar Hypoplasia type 3, which causes brain atrophy. Here, we address how Piccolo inactivation in rat neurons adversely affects synaptic function and thus may contribute to neuronal loss. Our analysis shows that Piccolo is critical for the recycling and maintenance of synaptic vesicles. We find that boutons lacking Piccolo have deficits in the Rab5/EEA1 dependent formation of early endosomes and thus the recycling of SVs. Mechanistically, impaired Rab5 function was caused by reduced synaptic recruitment of Pra1, known to interact selectively with the zinc finger domains of Piccolo. Importantly, over-expression of GTPase deficient Rab5 or the Znf1 domain of Piccolo restores the size and recycling of SV pools. These data provide a molecular link between the active zone and endosome sorting at synapses providing hints to how Piccolo contributes to developmental and psychiatric disorders.


2020 ◽  
Vol 319 (2) ◽  
pp. E401-E409
Author(s):  
Seulgi Lee ◽  
Jiyoon Beon ◽  
Min-Gyu Kim ◽  
Seyun Kim

Adipose tissue plays a central role in regulating whole body energy and glucose homeostasis at both organ and systemic levels. Inositol polyphosphates, such as 5-diphosphoinositol pentakisphosphate, reportedly control adipocyte functions and energy expenditure. However, the physiological roles of the inositol polyphosphate (IP) pathway in the adipose tissue are not yet fully defined. The aim of the present study was to test the hypothesis that inositol polyphosphate multikinase (IPMK), a key enzyme in the IP metabolism, plays a critical role in adipose tissue biology and obesity. We generated adipocyte-specific IPMK knockout ( Ipmk AKO) mice and evaluated metabolic phenotypes by measuring fat accumulation, glucose homeostasis, and insulin sensitivity in adult mice fed either a regular-chow diet or high-fat diet (HFD). Despite substantial reduction of IPMK, Ipmk AKO mice exhibited normal glucose tolerance and insulin sensitivity and did not show changes in fat accumulation in response to HFD-feeding. In addition, loss of IPMK had no major impact on thermogenic processes in response to cold exposure. Collectively, these findings suggest that adipocyte IPMK is dispensable for normal adipose tissue and its physiological functions in whole body metabolism, suggesting the complex roles that inositol polyphosphate metabolism has in the regulation of adipose tissue.


1992 ◽  
Vol 281 (1) ◽  
pp. 261-266 ◽  
Author(s):  
R F Irvine ◽  
A J Letcher ◽  
L R Stephens ◽  
A Musgrave

Swimming suspensions of Chlamydomonas eugametos were pelleted and homogenized, and the metabolism of inositol polyphosphates by cellular homogenates or supernatants was investigated. Ins(1,4,5)P3 was dephosphorylated under physiological conditions to yield a single InsP2, Ins(1,4]2. In the presence of ATP it was phosphorylated to give Ins(1,3,4,5)P3 as the only InsP4. The Ins(1,4,5)P3 3-kinase activity was predominantly soluble, was not detectably affected by calmodulin or Ca2+, and had a Km for Ins(1,4,5)P3 of 50 microM (two orders of magnitude higher than its mammalian counterpart). Ins(1,3,4,5)P4 was dephosphorylated by the cellular supernatants to Ins(1,3,4)P3 and Ins(1,4,5)P3, and could be phosphorylated to Ins(1,3,4,5,6)P4. No Ins(1,3,4)P3 6-kinase activity could be detected, and experiments with [3H]Ins(1,4,[32P]5)P3 revealed that Ins(1,3,4,5,6)P5 is formed from Ins(1,4,5)P3 with little loss of the 5-phosphate, i.e. the predominant route of synthesis is probably by a direct 6-phosphorylation of Ins(1,3,4,5)P4. Similar experiments with an (NH4)2SO4 fraction of turkey erythrocyte cytosol gave essentially the same result, i.e. direct phosphorylation of Ins(1,3,4,5)P4 in the 6 position is the predominant route of synthesis of InsP5 from that InsP4 in vitro. No InsP6 formation was detected in any of these experiments, but labelling of intact C. eugametos with [3H]inositol revealed that the cells do synthesize InsP6. The lipids of C. eugametos cells contain PtdIns, PtdIns(4)P and PtdIns(4,5)P2 [Irvine, Letcher, Lander, Drøbak, Dawson & Musgrave (1989) Plant Physiol. 64, 888-892]. Further examination of 32P-labelled lipids revealed that about 20% of the PtdInsP was the PtdIns(3)P isomer, and about 1% or less of the PtdInsP2 was the PtdIns(3,4)P2 isomer. The overall inositide metabolism of C. eugametos resembles that of a mammalian cell more closely than it does that of a plant cell or slime mould, and this suggests firstly that the known metabolism of inositol polyphosphates arose at an early time in eukaryotic evolution, and secondly that Chlamydomonas might prove a useful organism for genetic and comparative studies of inositide enzymology.


2013 ◽  
Vol 48 (1) ◽  
pp. 94-106
Author(s):  
Wu Li ◽  
Wang Ruozhong ◽  
Xu Wenzhong

2021 ◽  
Vol 22 (9) ◽  
pp. 4961
Author(s):  
Maria Kovalska ◽  
Eva Baranovicova ◽  
Dagmar Kalenska ◽  
Anna Tomascova ◽  
Marian Adamkov ◽  
...  

L-methionine, an essential amino acid, plays a critical role in cell physiology. High intake and/or dysregulation in methionine (Met) metabolism results in accumulation of its intermediate(s) or breakdown products in plasma, including homocysteine (Hcy). High level of Hcy in plasma, hyperhomocysteinemia (hHcy), is considered to be an independent risk factor for cerebrovascular diseases, stroke and dementias. To evoke a mild hHcy in adult male Wistar rats we used an enriched Met diet at a dose of 2 g/kg of animal weight/day in duration of 4 weeks. The study contributes to the exploration of the impact of Met enriched diet inducing mild hHcy on nervous tissue by detecting the histo-morphological, metabolomic and behavioural alterations. We found an altered plasma metabolomic profile, modified spatial and learning memory acquisition as well as remarkable histo-morphological changes such as a decrease in neurons’ vitality, alterations in the morphology of neurons in the selective vulnerable hippocampal CA 1 area of animals treated with Met enriched diet. Results of these approaches suggest that the mild hHcy alters plasma metabolome and behavioural and histo-morphological patterns in rats, likely due to the potential Met induced changes in “methylation index” of hippocampal brain area, which eventually aggravates the noxious effect of high methionine intake.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1865
Author(s):  
Nica Borgese ◽  
Nicola Iacomino ◽  
Sara Francesca Colombo ◽  
Francesca Navone

The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) membrane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the VAPs mediate a large number of processes, notably the generation of membrane contact sites between the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation (p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable, and its expression from a single allele appears to be insufficient to support toxic gain-of-function effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several basic cell physiological processes are affected by downregulation or complete depletion of VAPB, impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8 patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more common forms of the disease.


Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2380-2401 ◽  
Author(s):  
Saurav Brahmachari ◽  
Saebom Lee ◽  
Sangjune Kim ◽  
Changqing Yuan ◽  
Senthilkumar S Karuppagounder ◽  
...  

Abstract α-Synuclein misfolding and aggregation plays a major role in the pathogenesis of Parkinson’s disease. Although loss of function mutations in the ubiquitin ligase, parkin, cause autosomal recessive Parkinson’s disease, there is evidence that parkin is inactivated in sporadic Parkinson’s disease. Whether parkin inactivation is a driver of neurodegeneration in sporadic Parkinson’s disease or a mere spectator is unknown. Here we show that parkin in inactivated through c-Abelson kinase phosphorylation of parkin in three α-synuclein-induced models of neurodegeneration. This results in the accumulation of parkin interacting substrate protein (zinc finger protein 746) and aminoacyl tRNA synthetase complex interacting multifunctional protein 2 with increased parkin interacting substrate protein levels playing a critical role in α-synuclein-induced neurodegeneration, since knockout of parkin interacting substrate protein attenuates the degenerative process. Thus, accumulation of parkin interacting substrate protein links parkin inactivation and α-synuclein in a common pathogenic neurodegenerative pathway relevant to both sporadic and familial forms Parkinson’s disease. Thus, suppression of parkin interacting substrate protein could be a potential therapeutic strategy to halt the progression of Parkinson’s disease and related α-synucleinopathies.


Sign in / Sign up

Export Citation Format

Share Document