scholarly journals Hoogsteen base pairs increase the susceptibility of double-stranded DNA to cytotoxic damage

Author(s):  
Yu Xu ◽  
Akanksha Manghrani ◽  
Bei Liu ◽  
Honglue Shi ◽  
Uyen Pham ◽  
...  

AbstractAs the Watson-Crick faces of nucleobases are protected in double-stranded DNA (dsDNA), it is commonly assumed that deleterious alkylation damage to the Watson-Crick faces of nucleobases predominantly occurs when DNA becomes single-stranded during replication and transcription. However, damage to the Watson-Crick faces of nucleobases has been reported in dsDNA in vitro through mechanisms that are not understood. In addition, the extent of protection from methylation damage conferred by dsDNA relative to single-stranded DNA (ssDNA) has not been quantified. Watson-Crick base-pairs in dsDNA exist in dynamic equilibrium with Hoogsteen base-pairs that expose the Watson-Crick faces of purine nucleobases to solvent. Whether this can influence the damage susceptibility of dsDNA remains unknown. Using dot-blot and primer extension assays, we measured the susceptibility of adenine-N1 to methylation by dimethyl sulfate (DMS) when in an A-T Watson-Crick versus Hoogsteen conformation. Relative to unpaired adenines in a bulge, Watson-Crick A-T base-pairs in dsDNA only conferred ~130-fold protection against adenine-N1 methylation and this protection was reduced to ~40-fold for A(syn)-T Hoogsteen base-pairs embedded in a DNA-drug complex. Our results indicate that Watson-Crick faces of nucleobases are accessible to alkylating agents in canonical dsDNA and that Hoogsteen base-pairs increase this accessibility. Given the higher abundance of dsDNA relative to ssDNA, these results suggest that dsDNA could be a substantial source of cytotoxic damage. The work establishes DMS probing as a method for characterizing A(syn)-T Hoogsteen base pairs in vitro and also lays the foundation for a sequencing approach to map A(syn)-T Hoogsteen and unpaired adenines genome-wide in vivo.

2020 ◽  
Vol 295 (47) ◽  
pp. 15933-15947
Author(s):  
Yu Xu ◽  
Akanksha Manghrani ◽  
Bei Liu ◽  
Honglue Shi ◽  
Uyen Pham ◽  
...  

As the Watson–Crick faces of nucleobases are protected in dsDNA, it is commonly assumed that deleterious alkylation damage to the Watson–Crick faces of nucleobases predominantly occurs when DNA becomes single-stranded during replication and transcription. However, damage to the Watson–Crick faces of nucleobases has been reported in dsDNA in vitro through mechanisms that are not understood. In addition, the extent of protection from methylation damage conferred by dsDNA relative to ssDNA has not been quantified. Watson–Crick base pairs in dsDNA exist in dynamic equilibrium with Hoogsteen base pairs that expose the Watson–Crick faces of purine nucleobases to solvent. Whether this can influence the damage susceptibility of dsDNA remains unknown. Using dot-blot and primer extension assays, we measured the susceptibility of adenine-N1 to methylation by dimethyl sulfate (DMS) when in an A-T Watson–Crick versus Hoogsteen conformation. Relative to unpaired adenines in a bulge, Watson–Crick A-T base pairs in dsDNA only conferred ∼130-fold protection against adenine-N1 methylation, and this protection was reduced to ∼40-fold for A(syn)-T Hoogsteen base pairs embedded in a DNA-drug complex. Our results indicate that Watson–Crick faces of nucleobases are accessible to alkylating agents in canonical dsDNA and that Hoogsteen base pairs increase this accessibility. Given the higher abundance of dsDNA relative to ssDNA, these results suggest that dsDNA could be a substantial source of cytotoxic damage. The work establishes DMS probing as a method for characterizing A(syn)-T Hoogsteen base pairs in vitro and also lays the foundation for a sequencing approach to map A(syn)-T Hoogsteen and unpaired adenines genome-wide in vivo.


1988 ◽  
Vol 8 (10) ◽  
pp. 4557-4560
Author(s):  
O Bakker ◽  
J N Philipsen ◽  
B C Hennis ◽  
G Ab

The estrogen-dependent binding of a protein to the upstream region of the chicken vitellogenin gene was detected by using in vivo dimethyl sulfate, genomic DNase I, and in vitro exonuclease III footprinting. The site is located between base pairs -848 and -824, and its sequence resembles that of the nuclear factor I binding site. The results suggest that a nuclear factor binding to this site is involved in the regulation of the vitellogenin gene.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-21-SCI-21
Author(s):  
Steven Henikoff

Abstract The protein complexes that package our genomes must be mobilized for active processes to occur, including replication and transcription, but until recently we have only had a static, low resolution view of the "epigenome". Genomes are packaged into nucleosomes, octamers of four core histones wrapped by 147 base pairs of DNA. Nucleosomes present obstacles to transcription, which over genes is the RNA Polymerase II (RNAPII) complex, and one current challenge is to understand what happens to a nucleosome when RNAPII transcribes through the DNA that it occupies. We study this process by developing methods for following nucleosomes as they are evicted and replaced. Among the factors that we have implicated in the process is torsional stress, which we can now measure genome-wide. RNAPII movement can unwrap nucleosomes and thus destabilize them, causing them to be occasionally evicted and replaced. Interestingly, we find that destabilization of nucleosomes during transcription is enhanced by anthracycline compounds, widely used chemotherapeutic drugs that intercalate between DNA base pairs, thus suggesting a new mechanism for cell killing during chemotherapy. We are also interested in what happens to RNAPII during its encounter with a nucleosomes. In vitro, RNAPII cannot transcribe completely through a nucleosome, but rather stalls as it tries to unwrap the DNA from around the core. We have been studying this process in vivo, and have developed a simple method for precisely mapping RNAPII genome-wide. We have used this method to show exactly where RNAPII stalls as it unwraps a nucleosome in vivo, surprisingly in a different place in vivo from where it stalls in vitro. We also have discovered that a variant histone, H2A.Z, which is found in essentially all eukaryotes, helps to reduce the nucleosome barrier to transcription, and in this way may modulate transcription. Other protein components of the epigenome involved in dynamic processes are nucleosome remodelers, which use the energy of ATP to slide or even evict nucleosomes from DNA. Some remodelers help RNAPII get started and others help it overcome the nucleosome barrier to transcription, and by mapping them at base-pair resolution, we can gain insight into how they act. We have also applied our high-resolution mapping tools to transcription factors, which bind DNA at specific sites to regulate transcription and other processes. Our ability to achieve high spatial and temporal resolution mapping of the binding and action of nucleosomes, transcription factors, remodelers and RNAPII provides us with a detailed picture of epigenome dynamics. By using these tools we are beginning to understand how DNA sequence and conformation are recognized for regulation of transcription and other epigenomic processes. Disclosures No relevant conflicts of interest to declare.


1988 ◽  
Vol 8 (6) ◽  
pp. 2513-2522
Author(s):  
J Gottlieb ◽  
N Muzyczka

When circular recombinant plasmids containing adeno-associated virus (AAV) DNA sequences are transfected into human cells, the AAV provirus is rescued. Using these circular AAV plasmids as substrates, we isolated an enzyme fraction from HeLa cell nuclear extracts that excises intact AAV DNA in vitro from vector DNA and produces linear DNA products. The recognition signal for the enzyme is a polypurine-polypyrimidine sequence which is at least 9 residues long and rich in G.C base pairs. Such sequences are present in AAV recombinant plasmids as part of the first 15 base pairs of the AAV terminal repeat and in some cases as the result of cloning the AAV genome by G.C tailing. The isolated enzyme fraction does not have significant endonucleolytic activity on single-stranded or double-stranded DNA. Plasmid DNA that is transfected into tissue culture cells is cleaved in vivo to produce a pattern of DNA fragments similar to that seen with purified enzyme in vitro. The activity has been called endo R for rescue, and its behavior suggests that it may have a role in recombination of cellular chromosomes.


1988 ◽  
Vol 8 (6) ◽  
pp. 2513-2522 ◽  
Author(s):  
J Gottlieb ◽  
N Muzyczka

When circular recombinant plasmids containing adeno-associated virus (AAV) DNA sequences are transfected into human cells, the AAV provirus is rescued. Using these circular AAV plasmids as substrates, we isolated an enzyme fraction from HeLa cell nuclear extracts that excises intact AAV DNA in vitro from vector DNA and produces linear DNA products. The recognition signal for the enzyme is a polypurine-polypyrimidine sequence which is at least 9 residues long and rich in G.C base pairs. Such sequences are present in AAV recombinant plasmids as part of the first 15 base pairs of the AAV terminal repeat and in some cases as the result of cloning the AAV genome by G.C tailing. The isolated enzyme fraction does not have significant endonucleolytic activity on single-stranded or double-stranded DNA. Plasmid DNA that is transfected into tissue culture cells is cleaved in vivo to produce a pattern of DNA fragments similar to that seen with purified enzyme in vitro. The activity has been called endo R for rescue, and its behavior suggests that it may have a role in recombination of cellular chromosomes.


1988 ◽  
Vol 8 (10) ◽  
pp. 4557-4560 ◽  
Author(s):  
O Bakker ◽  
J N Philipsen ◽  
B C Hennis ◽  
G Ab

The estrogen-dependent binding of a protein to the upstream region of the chicken vitellogenin gene was detected by using in vivo dimethyl sulfate, genomic DNase I, and in vitro exonuclease III footprinting. The site is located between base pairs -848 and -824, and its sequence resembles that of the nuclear factor I binding site. The results suggest that a nuclear factor binding to this site is involved in the regulation of the vitellogenin gene.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Shipra Kumari ◽  
Bashistha Kumar Kanth ◽  
Ju young Ahn ◽  
Jong Hwa Kim ◽  
Geung-Joo Lee

Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes—LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12—were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.


2021 ◽  
Vol 22 (4) ◽  
pp. 2141
Author(s):  
Srinu Tumpara ◽  
Elena Korenbaum ◽  
Mark Kühnel ◽  
Danny Jonigk ◽  
Beata Olejnicka ◽  
...  

The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359–394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse monoclonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot- and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1–0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Narendra Pratap Singh ◽  
Bony De Kumar ◽  
Ariel Paulson ◽  
Mark E. Parrish ◽  
Carrie Scott ◽  
...  

Knowledge of the diverse DNA binding specificities of transcription factors is important for understanding their specific regulatory functions in animal development and evolution. We have examined the genome-wide binding properties of the mouse HOXB1 protein in embryonic stem cells differentiated into neural fates. Unexpectedly, only a small number of HOXB1 bound regions (7%) correlate with binding of the known HOX cofactors PBX and MEIS. In contrast, 22% of the HOXB1 binding peaks display co-occupancy with the transcriptional repressor REST. Analyses revealed that co-binding of HOXB1 with PBX correlates with active histone marks and high levels of expression, while co-occupancy with REST correlates with repressive histone marks and repression of the target genes. Analysis of HOXB1 bound regions uncovered enrichment of a novel 15 base pair HOXB1 binding motif HB1RE (HOXB1 response element). In vitro template binding assays showed that HOXB1, PBX1, and MEIS can bind to this motif. In vivo, this motif is sufficient for direct expression of a reporter gene and over-expression of HOXB1 selectively represses this activity. Our analyses suggest that HOXB1 has evolved an association with REST in gene regulation and the novel HB1RE motif contributes to HOXB1 function in part through a repressive role in gene expression.


Sign in / Sign up

Export Citation Format

Share Document