scholarly journals Accurate determination of meat mass fractions using DNA measurements for quantifying meat adulteration

Author(s):  
Sasithon Temisak ◽  
Pattanapong Thangsunan ◽  
Jiranun Boonil ◽  
Watiporn Yenchum ◽  
Kanjana Hongthong ◽  
...  

AbstractThe problem in meat adulteration and food fraud emphasised the requirement of developing accurate analytical approaches for the quantitative detection in helping the control of meat adulteration. In this study, the droplet digital Polymerase Chain Reaction (ddPCR) assays to quantify the ratios of pork DNA to the total amount of meat DNA were developed by challenging against DNA extracted from a range of gravimetrically prepared matrices of pork in beef. A single copy nuclear DNA gene, β-actin, was employed as a target gene, accompanied with myostatin gene as a cross species target for mammal and poultry meat background in order to quantifying approach. All the developed assays, singleplex, duplex and triplex did not show significant difference in quantification of pork content in beef background and demonstrated a good and comparable performance to the mass fractions. The singleplex assay provided more biases than the other two assays when performing with a low concentration of target species. The duplex assay provided a simultaneous quantification of pork and myostatin, whereas the triplex assay was able to detect pork, beef and myostatin with a decrease of technical error, cost and running time. All proposed methods allowed us to quantify pork addition in beef with a limit of quantification (LOQ) estimated at 0.1% (w/w) and a limit of detection (LOD) down to 0.01% (w/w). The developed triplex assay was also tested with commercial processed foods and showed the ability to determine not only the presence of particular pork or beef but also the quantitative purpose directly without standard curves. Hence, the developed ddPCR assays demonstrated a good trueness and precision of the methods in quantifying pork or beef content for meat adulteration. It is expected that these developed approaches can be applied to help regulators to confidently enforce food labelling obligations.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenlong Guo ◽  
YiFei Su ◽  
Kexin Li ◽  
MengYi Tang ◽  
Qiang Li ◽  
...  

AbstractThe development of detecting residual level of abamectin B1 in apples is of great importance to public health. Herein, we synthesized a octopus-like azobenzene fluorescent probe 1,3,5-tris (5′-[(E)-(p-phenoxyazo) diazenyl)] benzene-1,3-dicarboxylic acid) benzene (TPB) for preliminary detection of abamectin B1 in apples. The TPB molecule has been characterized by ultraviolet–visible absorption spectrometry, 1H-nuclear magnetic resonance, fourier-transform infrared (FT-IR), electrospray ionization mass spectroscopy (ESI-MS) and fluorescent spectra. A proper determination condition was optimized, with limit of detection and limit of quantification of 1.3 µg L−1 and 4.4 μg L−1, respectively. The mechanism of this probe to identify abamectin B1 was illustrated in terms of undergoing aromatic nucleophilic substitution, by comparing fluorescence changes, FT-IR and ESI-MS. Furthermore, a facile quantitative detection of the residual abamectin B1 in apples was achieved. Good reproducibility was present based on relative standard deviation of 2.2%. Six carboxyl recognition sites, three azo groups and unique fluorescence signal towards abamectin B1 of this fluorescent probe demonstrated reasonable sensitivity, specificity and selectivity. The results indicate that the octopus-like azobenzene fluorescent probe can be expected to be reliable for evaluating abamectin B1 in agricultural foods.


2020 ◽  
pp. 1-10
Author(s):  
C. Tonini ◽  
M.S. Oliveira ◽  
E.B. Parmeggiani ◽  
D.A.F. Sturza ◽  
A.O. Mallmann ◽  
...  

The inclusion of anti-mycotoxin additives (AMA) in the diet of production animals has been widely used to avoid mycotoxin exposure. In order to confirm the efficacy of such products in vivo, measurement of mycotoxins and/or their metabolites in biological fluids is preconized. This study aimed at determining the serological biomarkers of zearalenone (ZEN), α-zearalenol, β-zearalenol, α-zearalanol, β-zearalanol (β-ZAL) and zearalanone, to evaluate the efficacy of an AMA in beef heifers. The trial lasted 37 days: 11 days of adaptation, 21 days of actual experiment, and 5 days of regression. Twenty-four heifers were randomly assigned to receive one of the following treatments (n=6/group): (T1) basal diet (control); (T2) basal diet + 5 mg/kg of ZEN; (T3) basal diet + 5 mg/kg of ZEN + 2.5 kg/t of AMA; and (T4) basal diet + 5 mg/kg of ZEN + 5.0 kg/t of AMA. Blood sampling was performed on different days after the diet was given. The samples were centrifuged to obtain the blood serum, and then analysed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). β-ZAL was detected above the limit of quantification both in the unconjugated (>0.60 ng/ml) and conjugated (>0.90 ng/ml) forms. The remaining metabolites presented concentrations under the limit of detection. In the efficacy evaluation of the AMA, there was no significant difference (P>0.05) between the treatments with and without additive at the tested levels of inclusion. Thus, β-ZAL may be employed as a biomarker of ZEN exposure via diet to evaluate the efficacy of an AMA through serological parameters. The technique applied in this study proved to be an adequate alternative for in vivo confirmation of the efficacy of products in adsorbing the toxin.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6163
Author(s):  
Aree Choodum ◽  
Nareumon Lamthornkit ◽  
Chanita Boonkanon ◽  
Tarawee Taweekarn ◽  
Kharittha Phatthanawiwat ◽  
...  

Benzo(a)pyrene (BaP) has been recognized as a marker for the detection of carcinogenic polycyclic aromatic hydrocarbons. In this work, a novel monolithic solid-phase extraction (SPE) sorbent based on graphene oxide nanoparticles (GO) in starch-based cryogel composite (GO-Cry) was successfully prepared for BaP analysis. Rice flour and tapioca starch (gel precursors) were gelatinized in limewater (cross-linker) under alkaline conditions before addition of GO (filler) that can increase the ability to extract BaP up to 2.6-fold. BaP analysis had a linear range of 10 to 1000 µgL−1 with good linearity (R2 = 0.9971) and high sensitivity (4.1 ± 0.1 a.u./(µgL−1)). The limit of detection and limit of quantification were 4.21 ± 0.06 and 14.04 ± 0.19 µgL−1, respectively, with excellent precision (0.17 to 2.45%RSD). The accuracy in terms of recovery from spiked samples was in the range of 84 to 110% with no significant difference to a C18 cartridge. GO-Cry can be reproducibly prepared with 2.8%RSD from 4 lots and can be reused at least 10 times, which not only helps reduce the analysis costs (~0.41USD per analysis), but also reduces the resultant waste to the environment.


2020 ◽  
Vol 840 ◽  
pp. 406-411
Author(s):  
Suherman Suherman ◽  
Ghilma Milawonso ◽  
Kinichi Morita ◽  
Hitoshi Mizuguchi ◽  
Yuji Oki

The development of portable instrumentation for heavy metals analysis was increased rapidly. However, the quality of data from portable methods has so far been questioned when compared to conventional instrumentation. In this research, a comparative study of conventional and portable instrumentations for Cr(VI) analysis on liquid waste water of Chemistry Laboratory at Universitas Gadjah Mada (UGM) was conducted. This research started with validation and statistical evaluation of instrumentation methods which are UV-Visible spectrophotometer, portable spectrophotometer (PiCOEXPLORER) and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The validation methods consist of determination of linearity, sensitivity, limit of detection and limit of quantification. The results showed that the validation methods of ICP-AES were better than PiCOEXPLORER and UV-Vis spectrophotometer. Based on t-test, it was obtained that the result of Cr(VI) analyses with the comparison of UV-Vis and PiCOEXPLORER, ICP-AES and PiCOEXPLORER, and UV-Vis and ICP-AES; there were no significant difference (tcount< ttable). The ANOVA test (F test) results showed that the Fcount value is less than Ftable so that the results of Cr(VI) analysis in the standard solution and liquid waste samples measured by three instrumentations. Thus, it was concluded that portable instrumentations was good and gives the same quality as conventional instrumentations (UV-Vis and ICP AES).


2020 ◽  
Vol 58 (5) ◽  
pp. 411-417
Author(s):  
Maimana A Magdy ◽  
Rehab M Abdelfatah

Abstract A binary mixture of Silymarin (SR) and Vitamin E (VE) acetate, of an antioxidant and a hepatoprotective effect, has been analyzed using a sensitive, selective and economic high performance thin layer chromatographic (HPTLC) method in their pure forms, pharmaceutical formulation and spiked human plasma. SR and VE were separated on 60F254 silica gel plates using hexane:acetone:formic acid (7:3:0.15, v/v/v) as a developing system with UV detection at 215 nm. The method was evaluated for linearity, accuracy, precision, selectivity, limit of detection (LOD) and limit of quantification (LOQ). SR and VE were detected in the linear range of 0.2–2.5 and 0.2–4.5 μg/band, respectively. Method validation was done as per ICH guidelines and acceptable results of accuracy of 99.86 ± 1.190 and 100.22 ± 1.609 for SR and VE, respectively were obtained. The method has been successfully applied for determination of the studied drugs in their pharmaceutical formulation without any interference from excipients, and in spiked plasma samples. Results obtained by the developed HPTLC-densitometric method were statistically compared to those obtained by the reported HPLC methods and no significant difference was found between them.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Iqbal Ahmad ◽  
Syed Haider Abbas ◽  
Zubair Anwar ◽  
Muhammad Ali Sheraz ◽  
Sofia Ahmed ◽  
...  

A stability-indicating photochemical method has been developed for the assay of thiamine (TH) salts in aqueous solution and in fresh and aged vitamin preparations. It is based on the photooxidation of TH by UV irradiation to form thiochrome (TC) in alkaline solution. The TC : TH ratio under controlled conditions of light intensity, temperature, pH, exposure time, and irradiation distance is constant and can be used to determine the concentration of UV irradiated TH solutions. TC, on extraction with isobutanol from the photodegraded solution of TH, has been determined by the UV spectrophotometric method at 370 nm. It exhibits a high intensity of absorption in the UV region that can be used for the assay of even low concentrations of TH. Under optimum conditions, Beer’s law is obeyed in the concentration range of 0.20–2.00 mg/100 ml (R2 = 09998). The limit of detection (LOD) and limit of quantification (LOQ) are 0.0076 and 0.0231 mg/100 ml, respectively. The method has been validated and applied to aqueous solutions and vitamin preparations. The results have statistically been compared with the United States Pharmacopeia liquid chromatography method. It has been found that there is no significant difference between the two methods at 95% confidence level.


2005 ◽  
Vol 59 (3) ◽  
pp. 286-292 ◽  
Author(s):  
Reinhard Vehring

Dispersive Raman spectroscopy with excitation by a red diode laser is suitable for quantitative crystallinity measurements in powders for pulmonary drug delivery. In spray-dried mixtures of salmon calcitonin and mannitol, all three crystalline polymorphs of mannitol and amorphous mannitol were unambiguously identified and their mass fractions were measured with a limit of quantification of about 5%. The instrument design offered high sensitivity and adequate background suppression, resulting in a low limit of detection in the range of 0.01% to 1%. This spectroscopy method has significant advantages over established techniques regarding specificity, sensitivity, and sample requirements.


2020 ◽  
Vol 18 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Piotr Rusiniak ◽  
Anna Ruszczyńska ◽  
Katarzyna Wątor ◽  
Ewa Bulska ◽  
Ewa Kmiecik

AbstractThe work presents the results of geothermal water sample analysis with respect to the determination of total selenium concentration. For this purpose, geothermal water (GT) samples were collected from three different intakes (GT-1, GT-2, GT-3) with similar temperatures of about 85°C. Tests were carried out to see if the methodology of sample preparation influenced total selenium concentration during analysis by inductively coupled plasma mass spectrometry (ICP-MS). Samples (raw and filtered) were preserved with nitric acid (HNO3) and mineralised in the laboratory. From the data obtained it was found that there is no significant difference between total selenium concentration in raw and filtered samples. Following mineralisation, the concentrations in the samples were below the limit of detection or limit of quantification. While different analytical steps or procedures are applied, the results of total selenium concentration can vary. Furthermore, high-performance liquid chromatography coupled with ICP-MS was used for the identification of selenium species. The results revealed that hexavalent selenium – Se(VI) – in the geothermal water was found only in samples collected from the GT-2 and GT-3 intakes.


2020 ◽  
Vol 103 (6) ◽  
pp. 1633-1638
Author(s):  
Yu Zhang ◽  
Qian Li ◽  
Yanmei Feng ◽  
Lan Yang ◽  
Daiyu Qiu ◽  
...  

Abstract Background As known to us, HPLC method was often used to determine the contents of Angelicae sinesis Radix. In view of the shortcomings of HPLC method, qNMR has prominent advantages in determining the contents of bioactive components in the quantitative and qualitative analysis of Angelicae sinesis Radix. Objective In this study, a quick, simple, and accurate method was established to determine the components of ferulic acid, coniferyl ferulate, and ligustilide in Angelicae sinesis Radix. Method Using dimethyl sulfoxide-d6(DMSO-d6) as the test solvent and pyrazine as the internal standard substance, 1H-qNMR measurement was performed on a 600 MHz spectrometer. The quantitative resonance peaks of pyrazine, ferulic acid, ligustilide, and coniferyl ferulate were at δ8.66 ppm, δ6.35–6.37 ppm, δ5.53–5.55 ppm, and δ6.50–6.53 ppm, respectively. Results The linear relationship, limit of detection, limit of quantification, precision, stability, and recovery were verified and the results were good. On the other hand, it was verified by HPLC, and the HPLC used for verification passed the methodological investigation of linearity, precision, repeatability, stability, and recovery, and the results were good. In addition, no significant difference in results was found between the 1H-qNMR and HPLC-UV methods in determining the content of three components in three batches of Angelicae sinesis Radix. Conclusions The method can be used for simultaneous determination of three active components, and providing a scientific basis for the overall quality evaluation and quality control of Angelicae sinesis Radix. Hightlights In this study, 1H-qNMR was used to determine ferulic acid, coniferyl ferulate and ligustilide in Angelicae Sinensis Radix for the first time.


2011 ◽  
Vol 17 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Zenita Devi ◽  
K. Basavaiah ◽  
K.B. Vinay

Three simple and sensitive spectrophotometric methods are described for the determination of domperidone (DOM) in bulk drug and in dosage forms using bromate-bromide mixture as brominating agent in acid medium and three dyes, meta-cresol purple (MCP), amaranth (AMR) and erioglaucine (EGC). The methods involve the addition of a known excess of bromate-bromide mixture to an acidified solution of DOM followed by the determination of the residual bromine by reacting with a fixed amount of either MCP dye and measuring the absorbance at 530 nm (method A) or AMR dye and measuring the absorbance at 520 nm (method B) or EGC dye and measuring the absorbance at 630 nm (method C). Beer?s law is obeyed over the concentration ranges, 0.63 - 10.0, 0.25-4.0 and 0.13-2.0 ?g mL-1 for method A, method B and method C, respectively. The apparent molar absorptivities are calculated to be 3.751 ? 104, 6.604 ? 104 and 1.987 ? 105 L mol-1cm-1 for method A, method B and method C, respectively and the corresponding sandell sensitivity values are 0.011, 0.006 and 0.002 ?g cm-2. The limit of detection and the limit of quantification are also reported for all the three methods. No interference was observed from common additives found in pharmaceutical preparations. Statistical comparisons of the results with those of the reference method showed an excellent agreement, and indicated no significant difference in accuracy and precision. The accuracy and reliability of the methods were further ascertained by performing recovery tests via standard-addition technique.


Sign in / Sign up

Export Citation Format

Share Document