scholarly journals Inactivation of p21-Activated Kinase 2 (Pak2) Inhibits the Development of Nf2-Deficient Malignant Mesothelioma

2020 ◽  
Author(s):  
Eleonora Sementino ◽  
Yuwaraj Kadariya ◽  
Mitchell Cheung ◽  
Craig W. Menges ◽  
Yinfei Tan ◽  
...  

AbstractMalignant mesotheliomas (MM) show frequent somatic loss of the NF2 tumor suppressor gene. The NF2 product, Merlin, is implicated in several tumor-related pathways, including p21-activated kinase (PAK) signaling. Merlin is both a phosphorylation target for PAK and a negative regulator of this oncogenic kinase. Merlin loss results in PAK activation, and PAK inhibitors hold promise for the treatment of NF2-deficient tumors. To test this possibility in an in vivo genetic system, Nf2f/f;Cdkn2af/f mice were crossed to mice with conditional knockout of Pak2, a highly expressed group I Pak member. Cohorts of these animals were injected in either the thoracic or peritoneal cavities with adeno-Cre virus to delete floxed alleles in the mesothelial lining. Loss of Pak2 resulted in a markedly decreased incidence and delayed onset and progression of pleural and peritoneal MMs in Nf2;Cdkn2a-deficient (NC) mice, as documented by Kaplan-Meier survival curves and in vivo bioluminescent imaging. RNA-seq revealed that MMs from NC;Pak2-/- mice showed downregulated expression of genes involved in several oncogenic pathways (Wnt, Akt) when compared to MMs from mice retaining Pak2. Kinome profiling showed that, as compared to NC MM cells, NC;Pak2-/- MM cells had multiple kinase changes indicative of an epithelial to mesenchymal transition. Collectively, these findings suggest that NC;Pak2-/- MMs adapt by reprogramming their kinome and gene signature profiles to bypass the need for PAK activity via the activation of other compensatory oncogenic kinase pathways. The identification of such secondary pathways offers opportunities for rational combination therapies to circumvent resistance to anti-PAK drugs.

Author(s):  
Di Zheng ◽  
Kezhou Xia ◽  
Ling Yu ◽  
Changtian Gong ◽  
Yubo Shi ◽  
...  

Osteosarcoma is the most common malignant bone tumor, and although there has been significant progress in its management, metastases often herald incurable disease. Here we defined genes differentially expressed between primary and metastatic osteosarcoma as metastasis-related genes (MRGs) and used them to construct a novel six-MRG prognostic signature for overall survival of patients with osteosarcoma. Validation in internal and external datasets confirmed satisfactory accuracy and generalizability of the prognostic model, and a nomogram based on the signature and clinical variables was constructed to aid clinical decision-making. Of the six MRGs, FHIT is a well-documented tumor suppressor gene that is poorly defined in osteosarcoma. Consistent with tumor suppressor function, FHIT was downregulated in osteosarcoma cells and human osteosarcoma samples. FHIT overexpression inhibited osteosarcoma proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, FHIT overexpression upregulate the epithelial marker E-cadherin while repressing the mesenchymal markers N-cadherin and vimentin. Our six-MRG signature represents a novel and clinically useful prognostic biomarker for patients with osteosarcoma, and FHIT might represent a therapeutic target by reversing epithelial to mesenchymal transition.


2020 ◽  
Author(s):  
Hongzhen Li ◽  
Chunyan Peng ◽  
Chenhui Zhu ◽  
Shuang Nie ◽  
Xuetian Qian ◽  
...  

Abstract BackgroundHypoxia is a characteristic of the tumor microenvironments within Pancreatic cancer (PC) which has been linked to its malignancy. Oxidative stress, characterized by NADPH oxidase (NOX) activation, and epithelial-to-mesenchymal transition (EMT) could be induced by hypoxia which involved in tumor progression and metastasis. However, the relationship between hypoxia-induced oxidative stress and EMT has not been clarified, and the regulatory mechanism of NADPH oxidase is still unknown. MethodsA hypoxic-related gene signature and its associated pathways in PC were identified by bioinformatics method. Candidate downstream gene (NOX4), responding to hypoxia was validated by RT-PCR and western blot. In vitro and in vivo assays as well as tumor samples from our centre were preformed to explore the phenotype of NOX4 in PC. Immunofluorescence, western blot and chromatin immunoprecipitation assays were further applied to search for detailed mechanism. ResultsWe established a hypoxia-related gene signature within PC which was prognostic and linked with up-regulated EMT pathway. Then we found that hypoxia could induce stable up-regulation of NOX4, which is essential for EMT activation. Elevated expression of NOX4 was observed in PC samples and positively associated with advanced tumor grade and unfavorable prognosis. In vivo and in vitro experiments demonstrated NOX4 overexpress or inhibition in pancreatic cancer cells caused changes of proliferation and invasion ability. Then we found NOX4 could increase the methylation modification of histone H3 and regulated the transcription of EMT-associated gene_ snail family transcriptional repressor 1 (SNAIL1). ConclusionsThis study highlights the prognostic role of hypoxia-related genes in PC and strong correlation with EMT pathway. Our results also creatively discovered that NOX4 was an essential mediator for hypoxia-induced histone methylation modification and EMT in PC cells.


2021 ◽  
Author(s):  
Jiguang Zhang ◽  
Jingdong Wang ◽  
Jincheng Wu ◽  
Jianyuan Huang ◽  
Zhaoxian Lin ◽  
...  

Abstract Background: Fanconi anemia complementation group I (FANCI) acts as a critical protein factor for maintaining DNA stability. However, roles of FANCI in tumors has not been well revealed. In current study, we aimed to explore the function and potential mechanism of FANCI in non-small-cell lung cancer (NSCLC).Methods: To detect the expression of FANCI and UBE2T in NSCLC tissues, quantitative reverse-transcription PCR (qRT-PCR) and Western blot assays were employed. CCK-8, wound healing, Transwell, flow cytometry analysis and tumor xenograft were used to investigate the biological effects of FANCI in NSCLC in vitro and in vivo. FANCI binds with UBE2T was confirmed using coimmunoprecipitation (co-IP) assay. The EMT protein markers were detected via Western blot. Results: FANCI was upregulated in NSCLC tumor tissues compared with adjacent. In A549 and H1299 cells, knockdown of FANCI inhibited cell growth, migration, invasion and cell cycle,as well as epithelial-to-mesenchymal transition (EMT) in vitro. In vivo, the tumor growth was also repressed when FANCI was downregulated. Mechanistically, UBE2T directly bound with FANCI and regulated the monoubiquitination of FANCI. Futhermore, UBE2T restored the inhibitory effects induced by knocking down FANCI in NSCLC cells. Conclusion: FANCI was a putative oncogene in NSCLC, and was monouniubiquitinated by UBE2T to regulate cell growth, invasion and migration. Our findings suggested that FANCI might applied as a predicted biomarker and therapeutic target for NSCLC.


2016 ◽  
Vol 76 (1) ◽  
pp. 244-251 ◽  
Author(s):  
Katrin Palumbo-Zerr ◽  
Alina Soare ◽  
Pawel Zerr ◽  
Andrea Liebl ◽  
Rossella Mancuso ◽  
...  

ObjectivesTWIST1 is a member of the class B of basic helix-loop-helix transcription factors that regulates cell lineage determination and differentiation and has been implicated in epithelial-to-mesenchymal transition. Here, we aimed to investigate the role of TWIST1 for the activation of resident fibroblasts in systemic sclerosis (SSc).MethodsThe expression of Twist1 in fibroblasts was modulated by forced overexpression or siRNA-mediated knockdown. Interaction of Twist1, E12 and inhibitor Of differentiation (Id) was analysed by co-immunoprecipitation. The role of Twist1 in vivo was evaluated using inducible, conditional knockout mice with either ubiquitous or fibroblast-specific depletion of Twist1. Mice were either challenged with bleomycin or overexpressing a constitutively active transforming growth factor (TGF)β receptor I.ResultThe expression of TWIST1 was increased in fibroblasts in fibrotic human and murine skin in a TGFβ/SMAD3-dependent manner. TWIST1 in turn enhanced TGFβ-induced fibroblast activation in a p38-dependent manner. The stimulatory effects of TWIST1 on resident fibroblasts were mediated by TWIST1 homodimers. TGFβ promotes the formation of TWIST1 homodimers by upregulation of TWIST1 and by induction of inhibitor of DNA-binding proteins, which have high affinity for E12/E47 and compete against TWIST1 for E12/E47 binding. Mice with selective depletion of Twist1 in fibroblasts are protected from experimental skin fibrosis in different murine models to a comparable degree as mice with ubiquitous depletion of Twist1.ConclusionsOur data identify TWIST1 as a central pro-fibrotic factor in SSc, which facilitates fibroblast activation by amplifying TGFβ signalling. Targeting of TWIST1 may thus be a novel approach to normalise aberrant TGFβ signalling in SSc.


2017 ◽  
Author(s):  
Yi-Hua Jan ◽  
Tsung-Ching Lai ◽  
Chih-Jen Yang ◽  
Yuan-Feng Lin ◽  
Ming-Shyan Huang ◽  
...  

AbstractDisrupting signaling axes that are essential for tumor metastasis may provide therapeutic opportunity to cure cancer. We previously identified adenylate kinase 4 (AK4) as a biomarker of metastasis in lung cancer. Here we analyze AK4-associated metabolic gene signature and reveal HIF-1α is transcriptionally activated and associated with poor prognosis in lung adenocarcinoma patients. Overexpression of AK4 shifts metabolism towards aerobic glycolysis and elevates intracellular reactive oxygen species (ROS), which stabilizes and exaggerates HIF1-α protein expression and concurrently drives epithelial-to-mesenchymal transition (EMT) in hypoxia. Furthermore, overexpression of AK4 reduces hypoxic necrosis in tumors and promotes liver metastasis in vivo. Connectivity map analysis of AK4 gene signature identifies Withaferin-A as a potential compound to inhibit AK4-HIF-1α signaling axis, which then shows promising anti-metastatic potency in an orthotopic xenograft model of lung cancer. Our findings offer an alternative strategy to impair lung cancer metastasis via targeting AK4-HIF-1α axis.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yu Tian ◽  
Bo Tang ◽  
Chengye Wang ◽  
Yan Wang ◽  
Jiakai Mao ◽  
...  

AbstractOncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1742
Author(s):  
Melysa Fitriana ◽  
Wei-Lun Hwang ◽  
Pak-Yue Chan ◽  
Tai-Yuan Hsueh ◽  
Tsai-Tsen Liao

Head and neck squamous cell carcinomas (HNSCCs) are epithelial malignancies with 5-year overall survival rates of approximately 40–50%. Emerging evidence indicates that a small population of cells in HNSCC patients, named cancer stem cells (CSCs), play vital roles in the processes of tumor initiation, progression, metastasis, immune evasion, chemo-/radioresistance, and recurrence. The acquisition of stem-like properties of cancer cells further provides cellular plasticity for stress adaptation and contributes to therapeutic resistance, resulting in a worse clinical outcome. Thus, targeting cancer stemness is fundamental for cancer treatment. MicroRNAs (miRNAs) are known to regulate stem cell features in the development and tissue regeneration through a miRNA–target interactive network. In HNSCCs, miRNAs act as tumor suppressors and/or oncogenes to modulate cancer stemness and therapeutic efficacy by regulating the CSC-specific tumor microenvironment (TME) and signaling pathways, such as epithelial-to-mesenchymal transition (EMT), Wnt/β-catenin signaling, and epidermal growth factor receptor (EGFR) or insulin-like growth factor 1 receptor (IGF1R) signaling pathways. Owing to a deeper understanding of disease-relevant miRNAs and advances in in vivo delivery systems, the administration of miRNA-based therapeutics is feasible and safe in humans, with encouraging efficacy results in early-phase clinical trials. In this review, we summarize the present findings to better understand the mechanical actions of miRNAs in maintaining CSCs and acquiring the stem-like features of cancer cells during HNSCC pathogenesis.


2021 ◽  
Vol 22 (10) ◽  
pp. 5194
Author(s):  
Paola Pontrelli ◽  
Francesca Conserva ◽  
Rossella Menghini ◽  
Michele Rossini ◽  
Alessandra Stasi ◽  
...  

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


2021 ◽  
pp. 1-15
Author(s):  
Ping Xu ◽  
Xiao Mo ◽  
Ruixue Xia ◽  
Long Jiang ◽  
Chengfei Zhang ◽  
...  

BACKGROUND: Potassium channels, encoded by more than seventy genes, are cell excitability transmembrane proteins and become evident to play essential roles in tumor biology. OBJECTIVE: The deregulation of potassium channel genes has been related to cancer development and patient prognosis. The objective of this study is to understand the role of potassium channels in lung cancer. METHODS: We examined all potassium channel genes and identified that KCNN4 is the most significantly overexpressed one in lung adenocarcinoma. The role and mechanism of KCNN4 in lung adenocarcinoma were further investigated by in vitro cell and molecular assay and in vivo mouse xenograft models. RESULTS: We revealed that the silencing of KCNN4 significantly inhibits cell proliferation, migration, invasion, and tumorigenicity of lung adenocarcinoma. Further studies showed that knockdown of KCNN4 promotes cell apoptosis, induces cell cycle arrested in the S phase, and is associated with the epithelial to mesenchymal transition (EMT) process. Most importantly, we demonstrated that KCNN4 regulates the progression of lung adenocarcinoma through P13K/AKT and MEK/ERK signaling pathways. The use of inhibitors that targeted AKT and ERK also significantly inhibit the proliferation and metastasis of lung adenocarcinoma cells. CONCLUSIONS: This study investigated the function and mechanism of KCNN4 in lung adenocarcinoma. On this basis, this means that KCNN4 can be used as a tumor marker for lung adenocarcinoma and is expected to become an important target for a potential drug.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


Sign in / Sign up

Export Citation Format

Share Document