scholarly journals Loss of Ubiquitin Ligase STUB1 Amplifies IFNγ-R1/JAK1 Signaling and Sensitizes Tumors to IFNγ

2020 ◽  
Author(s):  
Georgi Apriamashvili ◽  
David W. Vredevoogd ◽  
Oscar Krijgsman ◽  
Onno B. Bleijerveld ◽  
Maarten A. Ligtenberg ◽  
...  

AbstractDespite the success of immune checkpoint blockade (ICB) most patients fail to respond durably, in part owing to reduced interferon gamma (IFNγ) sensitivity. Thus, elevating tumor IFNγ-receptor 1 (IFNγ-R1) expression to enhance IFNγ-mediated cytotoxicity is of potential clinical interest. Here, we show that increased IFNγ-R1 expression sensitizes tumors to IFNγ-mediated killing. To unveil the largely undefined mechanism governing IFNγ-R1 expression, we performed a genome-wide CRISPR/Cas9 screen for suppressors of its cell surface abundance. We uncovered STUB1 as key mediator of proteasomal degradation of the IFNγ-R1/JAK1 complex. STUB1 inactivation amplified IFNγ signaling, thereby sensitizing to cytotoxic T cells, but also inducing PD-L1. STUB1 loss in a rational combination with PD-1 blockade strongly inhibited melanomas in vivo. Clinically corroborating these results, a STUB1-KO gene signature was strongly associated with anti-PD-1 response. These results uncover STUB1 as pivotal regulator of IFNγ tumor signaling and provide a rationale for its inhibition combined with anti-PD-1.

Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 153
Author(s):  
Sabrina Daniela da Silva ◽  
Fabio Albuquerque Marchi ◽  
Jie Su ◽  
Long Yang ◽  
Ludmila Valverde ◽  
...  

Invasive oral squamous cell carcinoma (OSCC) is often ulcerated and heavily infiltrated by pro-inflammatory cells. We conducted a genome-wide profiling of tissues from OSCC patients (early versus advanced stages) with 10 years follow-up. Co-amplification and co-overexpression of TWIST1, a transcriptional activator of epithelial-mesenchymal-transition (EMT), and colony-stimulating factor-1 (CSF1), a major chemotactic agent for tumor-associated macrophages (TAMs), were observed in metastatic OSCC cases. The overexpression of these markers strongly predicted poor patient survival (log-rank test, p = 0.0035 and p = 0.0219). Protein analysis confirmed the enhanced expression of TWIST1 and CSF1 in metastatic tissues. In preclinical models using OSCC cell lines, macrophages, and an in vivo matrigel plug assay, we demonstrated that TWIST1 gene overexpression induces the activation of CSF1 while TWIST1 gene silencing down-regulates CSF1 preventing OSCC invasion. Furthermore, excessive macrophage activation and polarization was observed in co-culture system involving OSCC cells overexpressing TWIST1. In summary, this study provides insight into the cooperation between TWIST1 transcription factor and CSF1 to promote OSCC invasiveness and opens up the potential therapeutic utility of currently developed antibodies and small molecules targeting cancer-associated macrophages.


Blood ◽  
2005 ◽  
Vol 105 (4) ◽  
pp. 1823-1827 ◽  
Author(s):  
Bregje Mommaas ◽  
Janine A. Stegehuis-Kamp ◽  
Astrid G. van Halteren ◽  
Michel Kester ◽  
Jürgen Enczmann ◽  
...  

AbstractUmbilical cord blood transplantation is applied as treatment for mainly pediatric patients with hematologic malignancies. The clinical results show a relatively low incidence of graft-versus-host disease and leukemia relapse. Since maternal cells traffic into the fetus during pregnancy, we questioned whether cord blood has the potential to generate cytotoxic T cells specific for the hematopoietic minor histocompatibility (H) antigen HA-1 that would support the graft-versus-leukemia effect. Here, we demonstrate the feasibility of ex vivo generation of minor H antigen HA-1-specific T cells from cord blood cells. Moreover, we observed pre-existing HA-1-specific T cells in cord blood samples. Both the circulating and the ex vivo-generated HA-1-specific T cells show specific and hematopoietic restricted lysis of human leukocyte antigen-A2pos/HA-1pos (HLA-A2pos/HA-1pos) target cells, including leukemic cells. The cord blood-derived HA-1-specific cytotoxic T cells are from child origin. Thus, the so-called naive cord blood can comprise cytotoxic T cells directed at the maternal minor H antigen HA-1. The apparent immunization status of cord blood may well contribute to the in vivo graft-versus-leukemia activity after transplantation. Moreover, since the fetus cannot be primed against Y chromosome-encoded minor H antigens, cord blood is an attractive stem cell source for male patients. (Blood. 2005;105:1823-1827)


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jennifer Davis ◽  
Michelle Sargent ◽  
Jianjian Shi ◽  
Lei Wei ◽  
Maurice S Swanson ◽  
...  

Rationale: During the cardiac injury response fibroblasts differentiate into myofibroblasts, a cell type that enhances extracellular matrix production and facilitates ventricular remodeling. To better understand the molecular mechanisms whereby myofibroblasts are generated in the heart we performed a genome-wide screen with 18,000 cDNAs, which identified the RNA-binding protein muscleblind-like splicing regulator 1 (MBNL1), suggesting a novel association between mRNA alternative splicing and the regulation of myofibroblast differentiation. Objective: To determine the mechanism whereby MBNL1 regulates myofibroblast differentiation and the cardiac fibrotic response. Methods and Results: Confirming the results from our genome wide screen, adenoviral-mediated overexpression of MBNL1 promoted transformation of rat cardiac fibroblasts and mouse embryonic fibroblasts (MEFs) into myofibroblasts, similar to the level of conversion obtained by the profibrotic agonist transforming growth factor β (TGFβ). Antithetically, Mbnl1 -/- MEFs were refractory to TGFβ-induced myofibroblast differentiation. MBNL1 expression is induced in transforming fibroblasts in response to TGFβ and angiotensin II. These results were extended in vivo by analysis of dermal wound healing, a process dependent on myofibroblast differentiation and their proper activity. By day 6 control mice had achieved 82% skin wound closure compared with only 40% in Mbnl1 -/- mice. Moreover, Mbnl1 -/- mice had reduced survival following myocardial infarction injury due to defective fibrotic scar formation and healing. High throughput RNA sequencing (RNAseq) and RNA immunoprecipitation revealed that MBNL1 directly regulates the alternative splicing of transcripts for myofibroblast signaling factors and cytoskeletal-assembly elements. Functional analysis of these factors as mediators of MBNL1 activity is also described here. Conclusions: Collectively, our data suggest that MBNL1 coordinates myofibroblast transformation by directly mediating the alternative splicing of an array of mRNAs encoding differentiation-specific signaling transcripts, which then alter the fibroblast proteome for myofibroblast structure and function.


2021 ◽  
Author(s):  
Stefanie Andersson ◽  
Antonia Romero ◽  
Joana Isabel Rodrigues ◽  
Sansan Hua ◽  
Xinxin Hao ◽  
...  

The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells, and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified yeast deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis.


2010 ◽  
Vol 30 (11) ◽  
pp. 2837-2848 ◽  
Author(s):  
Vanessa Gobert ◽  
Dani Osman ◽  
Stéphanie Bras ◽  
Benoit Augé ◽  
Muriel Boube ◽  
...  

ABSTRACT Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory “CDK8 module,” composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi179-vi180
Author(s):  
Connor Stephenson ◽  
Katie Ross ◽  
William Vandergrift III ◽  
Abhay Varma ◽  
Bruce Frankel ◽  
...  

Abstract BACKGROUND High-Grade Meningioma (HGM), such as atypical and anaplastic meningiomas, represent a subgroup of meningiomas with histologic and clinical features suggesting aggressive behavior with a penchant for recurrence, even after surgical resection. Here, we postulate that high levels of Galectin-3 (Gal-3) affect the cellular composition and are at the root of the profoundly immunosuppressive tumor microenvironment of HGM. Our study aimed to validate the effect of the Gal-3 inhibitor (TD139) in in vivo. METHODS In vivo MGS2 murine models of HGM were utilized to assess efficacy of treatment with TD139 via intravenous injection. We used ELISA spot, RT-PCR and western blots techniques. MRI and immunohistochemistry -staining methods were used to detect tumor growth in in vivo following TD139 treatments. RESULTS Our results demonstrated a significantly elevated level of Gal-3 in both HGM tissue and serum when compared to non-tumor patients. Furthermore, Epithelial membrane antigen, Ki-67, and Transglutaminase 2 were highly expressed in HGM, whereas the number of observed cytotoxic T-cells in HGM was markedly decreased. When human PBMCs were activated with anti-CD3 (1µg/ml) and anti-CD28 (2µg/ml) antibodies and treated with recombinant Gal-3 protein (500ng/ml) for 96hr, we found reduced expression of T-Box Transcription Factor 21 and RAR Related Orphan Receptor C mRNA with concurrent upregulated expression of GATA Binding protein 3 and Forkhead box P3 mRNA. These findings support the concept that Gal-3 skews the differentiation of CD4+ T cells towards Th2 and Treg cells. In vivo treatment of TD139 (1mg/kg per day for 14 days) showed significant decrease (∼35%) in MGS2 tumor growth in orthotopic allograft model (at Day 41) and increased survival via multiple mechanism. Additionally, we observed an upregulation of CD38 (M1 macrophages) and CD8+ T cells in treated cells. CONCLUSIONS These findings suggest that TD139 may be an effective approach in the treatment of HGM patients.


2015 ◽  
Vol 112 (13) ◽  
pp. 4080-4085 ◽  
Author(s):  
Lauren P. Schewitz-Bowers ◽  
Philippa J. P. Lait ◽  
David A. Copland ◽  
Ping Chen ◽  
Wenting Wu ◽  
...  

Glucocorticoids remain the cornerstone of treatment for inflammatory conditions, but their utility is limited by a plethora of side effects. One of the key goals of immunotherapy across medical disciplines is to minimize patients’ glucocorticoid use. Increasing evidence suggests that variations in the adaptive immune response play a critical role in defining the dose of glucocorticoids required to control an individual’s disease, and Th17 cells are strong candidate drivers for nonresponsiveness [also called steroid resistance (SR)]. Here we use gene-expression profiling to further characterize the SR phenotype in T cells and show that Th17 cells generated from both SR and steroid-sensitive individuals exhibit restricted genome-wide responses to glucocorticoids in vitro, and that this is independent of glucocorticoid receptor translocation or isoform expression. In addition, we demonstrate, both in transgenic murine T cells in vitro and in an in vivo murine model of autoimmunity, that Th17 cells are reciprocally sensitive to suppression with the calcineurin inhibitor, cyclosporine A. This result was replicated in human Th17 cells in vitro, which were found to have a conversely large genome-wide shift in response to cyclosporine A. These observations suggest that the clinical efficacy of cyclosporine A in the treatment of SR diseases may be because of its selective attenuation of Th17 cells, and also that novel therapeutics, which target either Th17 cells themselves or the effector memory T-helper cell population from which they are derived, would be strong candidates for drug development in the context of SR inflammation.


1984 ◽  
Vol 160 (2) ◽  
pp. 552-563 ◽  
Author(s):  
A R Townsend ◽  
J J Skehel

Using genetically typed recombinant influenza A viruses that differ only in their genes for nucleoprotein, we have demonstrated that repeated stimulation in vitro of C57BL/6 spleen cells primed in vivo with E61-13-H17 (H3N2) virus results in the selection of a population of cytotoxic T lymphocytes (CTL) whose recognition of infected target cells maps to the gene for nucleoprotein of the 1968 virus. Influenza A viruses isolated between 1934 and 1979 fall into two groups defined by their ability to sensitize target cells for lysis by these CTL: 1934-1943 form one group (A/PR/8/34 related) and 1946-1979 form the second group (A/HK/8/68 related). These findings complement and extend our previous results with an isolated CTL clone with specificity for the 1934 nucleoprotein (27, 28). It is also shown that the same spleen cells derived from mice primed with E61-13-H17 virus in vivo, but maintained in identical conditions by stimulation with X31 virus (which differs from the former only in the origin of its gene for NP) in vitro, results in the selection of CTL that cross-react on target cells infected with A/PR/8/1934 (H1N1) or A/Aichi/1968 (H3N2). These results show that the influenza A virus gene for NP can play a role in selecting CTL with different specificities and implicate the NP molecule as a candidate for a target structure recognized by both subtype-directed and cross-reactive influenza A-specific cytotoxic T cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 870-870
Author(s):  
Nadja Blagitko-Dorfs ◽  
Pascal Schlosser ◽  
Rainer Claus ◽  
Tobias Ma ◽  
Katharina Götze ◽  
...  

Abstract Introduction: Treatment of acute myeloid leukemia (AML) in elderly patients remains challenging. Low-dose DNA hypomethylating agents are a therapeutic option in myelodysplastic syndromes and AML. However, the mechanism of action of hypomethylating agents and the role of induction of DNA hypomethylation in the clinical response is still unclear. To unravel the in vivoeffects of sequential cycles of decitabine, we set out to characterize methylomes of leukemic blasts, T cells (presumably not part of the malignant clone) and granulocytes before and during treatment of AML patients enrolled in the randomized phase II DECIDER clinical trial (NCT00867672). We developed a statistical model for longitudinal data analysis to identify the strongest hypomethylation response. Methods: Peripheral blood mononuclear cells (PBMC) from AML patients were collected before and during therapy (i.v. 20 mg/m2 decitabine for 5 days, with or without subsequent oral drug add-on). Leukemic blasts and T-cells were isolated using automatic magnetic sorting of cells (autoMACS) labelled with anti-human CD34, CD117 and CD3 MACS microbeads (Miltenyi Biotec), respectively. Granulocytes were isolated using dextran sedimentation. Cell type specific genome-wide DNA methylation profiles were obtained using Infinium Human Methylation 450 BeadChip arrays. Data were analyzed using R packages RnBeads applying beta mixture quantile dilation for normalization (Teschendorff et al. Bioinformatics, 29:189–196, 2013) and a modified version of NHMMfdr for multiple testing. Results: Peripheral blood blasts (median purity: 92%) were isolated from 20 patients, and T cells (median purity: 94%) from 26 patients before treatment and on days 4 and/or 8 and 15 of treatment cycle 1. From 10 patients, blasts and T cells were also collected during and/or after cycle 2. In total, until now 127 methylomes (46 blasts, 47 T cells, 34 granulocytes) were generated and used for mathematical modelling. Since the trial is still recruiting, genome-wide methylation was interpreted blinded to all clinical data including drug add-on (ATRA, valproic acid). First, the methylation dynamics of each individual CpG site described by a specified summary statistics were identified. Then, inter-probe distance and CpG annotation were incorporated to explain the dependence structure between CpG sites. In order to control the false discovery rate (FDR), we adapted a method proposed for differential DNA methylation (Kuan & Chiang, Biometrics 68: 774–783, 2012). The summary statistics for each CpG site were modelled to follow a non–homogeneous hidden Markov model. Statistical testing was validated by simulations revealing a very high discriminative power for affected CpGs even with very low methylation dynamics. Applying the model to blasts and T cells, extensive differences in the in vivomethylation changes became apparent. In blasts, 13% of CpG (59,920 CpGs of total 460,343 CpGs) showed significant DNA hypomethylation (Δβ>0.1, FDR<0.05) shared between patients by day 8, 75.8% of which (45,428 CpGs) were at least partially remethylated by day 15. Out of the 59,920 CpGs hypomethylated by day 8, 21.2% were located in promoters, 50.1% in gene bodies and 28.7% in intergenic regions. In contrast, in T cells only 2 CpGs out of 460,343 CpGs were significantly hypomethylated. This low number is partially due to the higher inter-individual variance as compared to leukemic blasts. Increases in DNA methylation across all patients were very rare, with only 38 CpGs consistently and significantly hypermethylated in blasts and none in T cells. Methylome analysis in granulocytes is currently ongoing. Conclusions: Our mathematical model revealed significant DNA hypomethylation by day 8, with striking remethylation by day 15 from start of decitabine treatment in AML blasts in vivo. Most of the hypomethylated CpGs resided in non-promoter regions. In contrast, T-cells were much less affected, which might be due to the low cell division rate and the fact that they are non-malignant cells. This model will hopefully allow determination whether the effects of decitabine are targeted or random, by including sequential samples from later treatment cycles. Unblinding of the patients' clinical data will reveal potential biomarkers of response to epigenetic therapy. Disclosures Lübbert: Ratiopharm: received study drug valproic acid, received study drug valproic acid Other; Johnson&Johnson: Honoraria, Membership on an entity's Board of Directors or advisory committees, received study drug decitabine Other.


Sign in / Sign up

Export Citation Format

Share Document