scholarly journals DHX30 coordinates cytoplasmic translation and mitochondrial function contributing to cancer cell survival

2020 ◽  
Author(s):  
Bartolomeo Bosco ◽  
Annalisa Rossi ◽  
Dario Rizzotto ◽  
Sebastiano Giorgetta ◽  
Alicia Perzolli ◽  
...  

AbstractDHX30 was recently implicated in the translation control of mRNAs involved in p53-dependent apoptosis. Here we show that DHX30 exhibits a more general function by integrating the activities of its cytoplasmic isoform and of the more abundant mitochondrial one. The depletion of both DHX30 isoforms in HCT116 cells leads to constitutive changes in polysome-associated mRNAs, enhancing the translation of mRNAs coding for cytoplasmic ribosomal proteins while reducing the translational efficiency of the nuclear-encoded mitoribosome mRNAs. Furthermore, depletion of both DHX30 isoforms exhibits higher global translation but slower proliferation, and reduced mitochondrial energy metabolism. Isoform-specific silencing established a role for cytoplasmic DHX30 in modulating global translation. The impact on global translation and proliferation were confirmed in U2OS and MCF7 cells, although the effect of DHX30 depletion on mitochondrial gene expression was observed only in MCF7 cells. Exploiting RIP, eCLIP, and gene expression data, we identified a gene signature comprising DHX30 and fourteen mitoribosome transcripts that we candidate as direct targets: this signature shows prognostic value in several TCGA cancer types, with higher expression associated with reduced overall survival. We propose that DHX30 contributes to cell homeostasis by coordinating ribosome biogenesis, global translation, and mitochondrial metabolism. Targeting DHX30 could, thus, expose a vulnerability in cancer cells.Author summaryTranslation occurs in the cell both through cytoplasmic and mitochondrial ribosomes, respectively translating mRNAs encoded by the nuclear and the mitochondrial genome. Here we found that DHX30, an RNA-binding protein implicated in p53-dependent apoptosis, enhances the translation of mRNAs coding for cytoplasmic ribosomal proteins while reducing that of the mitoribosome mRNAs when silenced. This coordination of the cytoplasmic and mitochondrial translation machineries affected both cell proliferation and energy metabolism, suggesting an important role for this mechanism in determining the fitness of cancer cells. Indeed, the analysis of publicly available cancer datasets led us to define a 15-genes signature that is able to affect the prognosis of a subset of cancer types. In this subset, we found that higher expression of the genes composing the signature is associated with a worse prognosis. We thus propose DHX30 as a potential vulnerability in cancer cells, that could be targeted to develop novel therapeutic strategies.

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4412
Author(s):  
Bartolomeo Bosco ◽  
Annalisa Rossi ◽  
Dario Rizzotto ◽  
Meriem Hadjer Hamadou ◽  
Alessandra Bisio ◽  
...  

DHX30 was recently implicated in the translation control of mRNAs involved in p53-dependent apoptosis. Here, we show that DHX30 exhibits a more general function by integrating the activities of its cytoplasmic isoform and of the more abundant mitochondrial one. The depletion of both DHX30 isoforms in HCT116 cells leads to constitutive changes in polysome-associated mRNAs, enhancing the translation of mRNAs coding for cytoplasmic ribosomal proteins while reducing the translational efficiency of the nuclear-encoded mitoribosome mRNAs. Furthermore, the depletion of both DHX30 isoforms leads to higher global translation but slower proliferation and lower mitochondrial energy metabolism. Isoform-specific silencing supports a role for cytoplasmic DHX30 in modulating global translation. The impact on translation and proliferation was confirmed in U2OS and MCF7 cells. Exploiting RIP, eCLIP, and gene expression data, we identified fourteen mitoribosome transcripts we propose as direct DHX30 targets that can be used to explore the prognostic value of this mechanism in cancer. We propose that DHX30 contributes to cell homeostasis by coordinating ribosome biogenesis, global translation, and mitochondrial metabolism. Targeting DHX30 could, thus, expose a vulnerability in cancer cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donguk Kim ◽  
Na Yeon Park ◽  
Keunsoo Kang ◽  
Stuart K. Calderwood ◽  
Dong-Hyung Cho ◽  
...  

AbstractArsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA-sequencing and bioinformatics analyses, differentially expressed genes in significantly affected biological pathways in these cell types were validated by real-time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly differential effects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without affecting the growth of HUMEC in a dose-dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are significantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6-treated MCF7 cells. Together, we provide the first evidence of differential effects of AS6 on normal and cancerous breast epithelial cells, suggesting that AS6 at moderate concentrations induces cell cycle arrest and apoptosis through modulating genome-wide gene expression, leading to compromised DNA repair and increased genome instability selectively in human breast cancer cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2136-2136
Author(s):  
Huong Chi Mai Tran ◽  
Rania Amrane ◽  
Elisabeth Mbemba ◽  
Michele Sabbah ◽  
Ismail Elalamy ◽  
...  

Abstract Background Cancer patients with venous thromboembolism (VTE) or at risk of VTE are treated with antithrombotic agents. Cancer cells express procoagulant properties and induce hypercoagulability in the microenvironment, that could impact the efficiency of the antithrombotic agents. Aims In the present study, we investigated the interaction between antithrombotic agents with pancreatic cancer cells, as well as with their microenvironment. The impact of apixaban, fondaparinux, enoxaparin and tinzaparin on the procoagulant properties of pancreatic cancer cells BXPC3 was examinated. Reciprocally, we also investigated the impact of BXPC3 on the potency of these antithrombotic agents. Methods BXPC3 cells (400 cells/μl) were exposed for 48 hours to apixaban (2 µg/ml), fondaparinux (2 µg/ml), enoxaparin, tinzaparin (2 anti-Xa IU/ml) or NaCL (control). Then, conditioned media (CM) and BXPC3 cells were harvested, separated and put in contact with normal platelet-poor plasma (PPP). Subsequently, thrombin generation (TG) was assessed using Thrombogram-Thrombinoscope® assay (Diagnostica Stago). Cells' viability was also assessed with the MTT assay. Gene expression for Tissue Factor (TF), Vascular Endothelial Growth Factor (VEGF), Thrombospondin 1 (THSB1) was assessed with RT-qPCR at the cells exposed or not to the antithrombotic agents. Expression of TF protein and activity of cancer cells was assessed using ELISA method. Residual anti-Xa activity in CM was measured using specific amidolytic assays for each antithrombotic agent. Results Apixaban, fondaparinux, enoxaparin, and tinzaparin significantly reduced cell viability by 25%, 12%, 14%, and 11% respectively. In the control experiment non treated BXPC3 cells enhanced TG. Pre-treatment of BXPC3 with the antithrombotic agents did not significantly modify their capacity to trigger and enhance TG. Among the studied agents only apixaban resulted in significant decrease of TF mRNA expression. However, protein expression of TF was not significantly modified by any of the antithrombotic agents. VEGF's mRNA expression was significantly decreased by fondaparinux and enoxaparin. THBS1's mRNA expression was significantly increased by apixaban. The concentrations of the anti-Xa activity of fondaparinux, enoxaparin and tinzaparin in the CM obtained at 48h after exposure of cells were reduced by 27%, 48% and 26% respectively as compared to those initially added in the culture medium. In contrast, the concentration of apixaban in the CM did not significantly change. The CM obtained by cells exposed to apixaban, fondaparinux, enoxaparin and tinzaparin inhibited TG by 70%, 30%, 40% and 90% respectively. Conclusion. Antithrombotic agents reduced the viability of BXPC3 cells. Among the studied agents, apixaban had the most pronounced effect on cells' viability. The antithrombotic agents had a potential downregulating effect on the proangiogenetic properties of BXPC3 via the decrease of VEGF gene expression (fondaparinux and enoxaparin) and enhancement of THBS1 gene expression (apixaban). Nevertheless, preincubation of BXPC3 with the antithrombotic agents did not alter the expression of TF protein and their effect on thrombin generation. Moreover, BXPCE exerted a "degradation" effect on LMWH and fondaparinux. Apixaban appeared to escape from this effect of the cancer cells. A significant inhibitory effect on thrombin generation was exerted by the residual concentrations of the antithrombotic agents in the microenvironment of cancer cells. The ensemble of these data highlight for the first time that the presence of antithrombotic agents in cancer cell microenvironment alters the biology of cancer cells and offer a constant antithrombotic effect in the microenvironment. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Nicolas Bonhoure ◽  
Viviane Praz ◽  
Robyn D. Moir ◽  
Gilles Willemin ◽  
François Mange ◽  
...  

AbstractMaf1-/- mice are lean, obesity-resistant and metabolically inefficient. Their increased energy expenditure is thought to be driven by a futile RNA cycle that reprograms metabolism to meet an increased demand for nucleotides stemming from the deregulation of RNA polymerase (pol) III transcription. Metabolic changes consistent with this model have been reported in both fasted and refed mice, however the impact of the fasting-refeeding-cycle on pol III function has not been examined. Here we show that changes in pol III occupancy in the liver of fasted versus refed wild-type mice are largely confined to low and intermediate occupancy genes; high occupancy genes are unchanged. However, in Maf1-/- mice, pol III occupancy of the vast majority of active loci in liver and the levels of specific precursor tRNAs in this tissue and other organs are higher than wild-type in both fasted and refed conditions. Thus, MAF1 functions as a chronic repressor of active pol III loci and can modulate transcription under different conditions. Our findings support the futile RNA cycle hypothesis, elaborate the mechanism of pol III repression by MAF1 and demonstrate a modest effect of MAF1 on global translation via reduced mRNA levels and translation efficiencies for several ribosomal proteins.


2011 ◽  
Vol 4 (2) ◽  
pp. 89
Author(s):  
Vanessa S. Gordon ◽  
Colin Rogers ◽  
David Reisman

The SWI/SNF complex is a key catalyst for gene expression and regulates a variety of pathways, many of which have anticancer roles. Its central roles in cellular growth control, DNA repair, differentiation, cell adhesion and development are often targeted, and inactivated, during cancer development and progression. In this review, we will discuss what is known about how SWI/SNF is inactivated, and describe the potential impact of abrogating this complex. BRG1 and BRM are the catalytic subunits which are essential for SWI/SNF function, and thus, it is not surprising that they are lost in a variety of cancer types. As neither gene is mutated when lost, the mechanism of suppression, as well as the impact of potential gene activity restoration, are reviewed.


2014 ◽  
Author(s):  
Adrin Jalali ◽  
Nico Pfeifer

Motivation: Molecular measurements from cancer patients such as gene expression and DNA methylation are usually very noisy. Furthermore, cancer types can be very heterogeneous. Therefore, one of the main assumptions for machine learning, that the underlying unknown distribution is the same for all samples, might not be completely fullfilled. We introduce a method, that can estimate this bias on a per-feature level and incorporate calculated feature confidences into a weighted combination of classifiers with disjoint feature sets. Results: The new method achieves state-of-the-art performance on many different cancer data sets with measured DNA methylation or gene expression. Moreover, we show how to visualize the learned classifiers to find interesting associations with the target label. Applied to a leukemia data set we find several ribosomal proteins associated with leukemia's risk group that might be interesting targets for follow-up studies and support the hypothesis that the ribosomes are a new frontier in gene regulation. Availability: The method is available under GPLv3+ License at https: //github.com/adrinjalali/Network-Classifier.


2021 ◽  
Author(s):  
Donguk Kim ◽  
Na Yeon Park ◽  
Keunsoo Kang ◽  
Stuart K. Calderwood ◽  
Dong-Hyung Cho ◽  
...  

ABSTRACTArsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans [1, 2]. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models [3, 4]. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA-sequencing and bioinformatics analyses, differentially expressed genes in significantly affected biological pathways in these cell types were validated by real-time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly differential effects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without affecting the growth of HUMEC in a dose-dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are significantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6-treated MCF7 cells. Together, we provide the first evidence of differential effects of AS6 on normal and cancerous breast epithelial cells, suggesting that AS6 at moderate concentrations induces cell cycle arrest and apoptosis through modulating genome-wide gene expression, leading to compromised DNA repair and increased genome instability selectively in human breast cancer cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Amir Hossein Aalami ◽  
Mohammad Mesgari ◽  
Amirhossein Sahebkar

Changes in the expression of microRNAs can affect cancer cells’ viability and behavior and the impact on cancer treatment. In this study, the expression of miR-155-5p, miR-203a-3p, and miR-223-3p in the MCF7 cancer cell line was studied when exposed to ZnO nanoparticles synthesized through a green route. Mentioned ZnO-NPs were well characterized by UV-vis spectroscopy, DLS, XRD, FTIR, FE-SEM, EDX, zeta potential, and AFM analyses. Cellular studies were conducted using ZnO-NPs before miRNA investigations including MTT cytotoxicity test against MCF7, MDA-MB-231, and HFF cell lines. Moreover, apoptosis assays were performed using morphological analysis, fluorescent dyes, flow cytometry, and evaluation of caspase-3 and caspase-8 gene expression. Biological properties such as the antioxidant and antimicrobial activity of these novel ZnO-NPs were considered. MTT assays showed that the inhibitory concentration (IC50) of ZnO-NPs after 24 h was 11.16 μg/mL, 60.08 μg/mL, and 26.3 μg/mL on MCF7, MDA-MB-231, and HFF cells, respectively. The qRT-PCR results showed reduced expression of miR-155-5p, miR-203a-3p, and miR-223-3p when the MCF7 cells were treated with the IC50 concentration of ZnO-NPs (11.16 μg/mL). The antioxidant activity results showed EC50 values at 57.19 μg/mL and 31.5 μg/mL in DPPH and ABTS assays, respectively. The antimicrobial activity of ZnO-NPs was determined on Gram-negative and Gram-positive bacterial strains and fungi using MIC and MBC assays. These NPs had a significant effect in reducing the expression of microRNAs in breast cancer cells. Finally, ZnO-NPs exerted antioxidant and antimicrobial activities.


2020 ◽  
Vol 21 (17) ◽  
pp. 6227
Author(s):  
Kamila Domińska ◽  
Karolina Kowalska ◽  
Kinga Anna Urbanek ◽  
Dominika Ewa Habrowska-Górczyńska ◽  
Tomasz Ochędalski ◽  
...  

The local renin–angiotensin system (RAS) plays an important role in the pathophysiology of the prostate, including cancer development and progression. The Ang-(1-9) and Ang-(3-7) are the less known active peptides of RAS. This study examines the influence of these two peptide hormones on the metabolic activity, proliferation and migration of prostate cancer cells. Significant changes in MTT dye reduction were observed depending on the type of angiotensin and its concentration as well as time of incubation. Ang-(1-9) did not regulate the 2D cell division of either prostate cancer lines however, it reduced the size of LNCaP colonies formed in soft agar, maybe through down-regulation of the HIF1a gene. Ang-(3-7) increased the number of PC3 cells in the S phase and improved anchorage-independent growth as well as mobility. In this case, a significant increase in MKI67, BIRC5, and CDH-1 gene expression was also observed as well as all members of the NF-kB family. Furthermore, we speculate that this peptide can repress the proliferation of LNCaP cells by NOS3-mediated G2/M cell cycle arrest. No changes in expression of BIRC5 and BCL2/BAX ratio were observed but a decrease mRNA proapoptotic BAD gene was seen. In the both lines, Ang-(3-7) improved ROCK1 gene expression however, increased VEGF and NOS3 mRNA was only seen in the PC3 or LNCaP cells, respectively. Interestingly, it appears that Ang-(1-9) and Ang-(3-7) can modulate the level of steroidogenic enzymes responsible for converting cholesterol to testosterone in both prostate cancer lines. Furthermore, in PC3 cells, Ang-(1-9) upregulated AR expression while Ang-(3-7) upregulated the expression of both estrogen receptor genes. Ang-(1-9) and Ang-(3-7) can impact on biological properties of prostate cancer cells by modulating inflammatory and steroidogenesis pathway genes, among others.


2008 ◽  
Vol 22 (9) ◽  
pp. 2116-2127 ◽  
Author(s):  
Zeynep Madak-Erdogan ◽  
Karen J. Kieser ◽  
Sung Hoon Kim ◽  
Barry Komm ◽  
John A. Katzenellenbogen ◽  
...  

Abstract Whereas estrogens exert their effects by binding to nuclear estrogen receptors (ERs) and directly altering target gene transcription, they can also initiate extranuclear signaling through activation of kinase cascades. We have investigated the impact of estrogen-mediated extranuclear-initiated pathways on global gene expression by using estrogen-dendrimer conjugates (EDCs), which because of their charge and size remain outside the nucleus and can only initiate extranuclear signaling. Genome-wide cDNA microarray analysis of MCF-7 breast cancer cells identified a subset of 17β-estradiol (E2)-regulated genes (∼25%) as EDC responsive. The EDC and E2-elicited increases in gene expression were due to increases in gene transcription, as observed in nuclear run-on assays and RNA polymerase II recruitment and phosphorylation. Treatment with antiestrogen or ERα knockdown using small interfering RNA abolished EDC-mediated gene stimulation, whereas GPR30 knockdown or treatment with a GPR30-selective ligand was without effect, indicating ER as the mediator of these gene regulations. Inhibitors of MAPK kinase and c-Src suppressed both E2 and EDC stimulated gene expression. Of note, in chromatin immunoprecipitation assays, EDC was unable to recruit ERα to estrogen-responsive regions of regulated genes, whereas ERα recruitment by E2 was very effective. These findings suggest that other transcription factors or kinases that are downstream effectors of EDC-initiated extranuclear signaling cascades are recruited to regulatory regions of EDC-responsive genes in order to elicit gene stimulation. This study thus highlights the importance of inputs from both nuclear and extranuclear ER signaling pathways in regulating patterns of gene expression in breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document