scholarly journals A meta-analysis of clinical cases of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance

2020 ◽  
Author(s):  
Luis Tobalina ◽  
Joshua Armenia ◽  
Elsa Irving ◽  
Mark J. O’Connor ◽  
Josep V. Forment

AbstractGermline mutations in the BRCA1 or BRCA2 genes predispose to hereditary breast and ovarian cancer and, mostly in the case of BRCA2, are also prevalent in cases of pancreatic and prostate malignancies. Tumours from these patients tend to lose both copies of the wild type BRCA gene, which makes them exquisitely sensitive to platinum drugs and PARP inhibitors (PARPi), treatments of choice in these disease settings. Reversion secondary mutations with the capacity of restoring BRCA protein expression have been documented in the literature as bona fide mechanisms of resistance to these treatments. Here, we perform a detailed analysis of clinical cases of reversion mutations described in BRCA1 and BRCA2, which underlines the different importance of BRCA protein domains in contributing to resistance and the potential key role of mutagenic end-joining DNA repair pathways in generating reversions. Our analyses suggest that pharmacological inhibition of these repair pathways could improve durability of drug treatments and highlights potential interventions to both prevent the appearance of reversions and provide new therapeutic opportunities after their acquisition.HighlightsComprehensive analysis of reversion mutations in BRCA genes identified in clinical cases of resistance to platinum or PARPiRevertant proteins devoid of parts of the original sequence, identifying key protein functions involved in resistanceHypomorph revertant BRCA proteins suggest potential new therapeutic opportunities to overcome resistancePrevalence of mutational end-joining DNA repair mechanisms leading to reversions, especially in those affecting BRCA2Pharmacological inhibition of mutational end-joining DNA repair could improve durability of drug treatments

2021 ◽  
Vol 32 (1) ◽  
pp. 103-112
Author(s):  
L. Tobalina ◽  
J. Armenia ◽  
E. Irving ◽  
M.J. O'Connor ◽  
J.V. Forment

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1506
Author(s):  
Angelos Papaspyropoulos ◽  
Nefeli Lagopati ◽  
Ioanna Mourkioti ◽  
Andriani Angelopoulou ◽  
Spyridon Kyriazis ◽  
...  

Protection of genome integrity is vital for all living organisms, particularly when DNA double-strand breaks (DSBs) occur. Eukaryotes have developed two main pathways, namely Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR), to repair DSBs. While most of the current research is focused on the role of key protein players in the functional regulation of DSB repair pathways, accumulating evidence has uncovered a novel class of regulating factors termed non-coding RNAs. Non-coding RNAs have been found to hold a pivotal role in the activation of DSB repair mechanisms, thereby safeguarding genomic stability. In particular, long non-coding RNAs (lncRNAs) have begun to emerge as new players with vast therapeutic potential. This review summarizes important advances in the field of lncRNAs, including characterization of recently identified lncRNAs, and their implication in DSB repair pathways in the context of tumorigenesis.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
K. C. Summers ◽  
F. Shen ◽  
E. A. Sierra Potchanant ◽  
E. A. Phipps ◽  
R. J. Hickey ◽  
...  

Repair of double-stranded breaks (DSBs) is vital to maintaining genomic stability. In mammalian cells, DSBs are resolved in one of the following complex repair pathways: nonhomologous end-joining (NHEJ), homologous recombination (HR), or the inclusive DNA damage response (DDR). These repair pathways rely on factors that utilize reversible phosphorylation of proteins as molecular switches to regulate DNA repair. Many of these molecular switches overlap and play key roles in multiple pathways. For example, the NHEJ pathway and the DDR both utilize DNA-PK phosphorylation, whereas the HR pathway mediates repair with phosphorylation of RPA2, BRCA1, and BRCA2. Also, the DDR pathway utilizes the kinases ATM and ATR, as well as the phosphorylation of H2AX and MDC1. Together, these molecular switches regulate repair of DSBs by aiding in DSB recognition, pathway initiation, recruitment of repair factors, and the maintenance of repair mechanisms.


2010 ◽  
Vol 2010 ◽  
pp. 1-32 ◽  
Author(s):  
Rihito Morita ◽  
Shuhei Nakane ◽  
Atsuhiro Shimada ◽  
Masao Inoue ◽  
Hitoshi Iino ◽  
...  

DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly inThermus thermophilusHB8.


Author(s):  
Natalja Beying ◽  
◽  
Carla Schmidt ◽  
Holger Puchta ◽  
◽  
...  

In genome engineering, after targeted induction of double strand breaks (DSBs) researchers take advantage of the organisms’ own repair mechanisms to induce different kinds of sequence changes into the genome. Therefore, understanding of the underlying mechanisms is essential. This chapter will review in detail the two main pathways of DSB repair in plant cells, non-homologous end joining (NHEJ) and homologous recombination (HR) and sum up what we have learned over the last decades about them. We summarize the different models that have been proposed and set these into relation with the molecular outcomes of different classes of DSB repair. Moreover, we describe the factors that have been identified to be involved in these pathways. Applying this knowledge of DSB repair should help us to improve the efficiency of different types of genome engineering in plants.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kaja Milanowska ◽  
Kristian Rother ◽  
Janusz M. Bujnicki

DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions.


2021 ◽  
Vol 22 (24) ◽  
pp. 13296
Author(s):  
Mariarosaria De Falco ◽  
Mariarita De Felice

All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Soma Ghosh ◽  
Tapas Saha

Faithful transmission of genetic information through generations ensures genomic stability and integrity. However, genetic alterations occur every now and then during the course of genome duplication. In order to repair these genetic defects and lesions, nature has devised several repair pathways which function promptly to prevent the cell from accumulating permanent mutations. These repair mechanisms seem to be significantly impacted by posttranslational modifications of proteins like phosphorylation and ubiquitination. Protein ubiquitination is emerging as a critical regulatory mechanism of DNA damage response. Non-proteolytic, proteasome-independent functions of ubiquitin involving monoubiquitination and polyubiquitination of DNA repair proteins contribute significantly to the signaling of DNA repair pathways. In this paper, we will particularly highlight the work on ubiquitin-mediated signaling in the repair processes involving the Fanconi anemia pathway, translesional synthesis, nucleotide excision repair, and repair of double-strand breaks. We will also discuss the role of ubiquitin ligases in regulating checkpoint mechanisms, the role of deubiquitinating enzymes, and the growing possibilities of therapeutic intervention in this ubiquitin-conjugation system.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Lei Zhao ◽  
Chengyu Bao ◽  
Yuxuan Shang ◽  
Xinye He ◽  
Chiyuan Ma ◽  
...  

Ionising radiation- (IR-) induced DNA double-strand breaks (DSBs) are considered to be the deleterious DNA lesions that pose a serious threat to genomic stability. The major DNA repair pathways, including classical nonhomologous end joining, homologous recombination, single-strand annealing, and alternative end joining, play critical roles in countering and eliciting IR-induced DSBs to ensure genome integrity. If the IR-induced DNA DSBs are not repaired correctly, the residual or incorrectly repaired DSBs can result in genomic instability that is associated with certain human diseases. Although many efforts have been made in investigating the major mechanisms of IR-induced DNA DSB repair, it is still unclear what determines the choices of IR-induced DNA DSB repair pathways. In this review, we discuss how the mechanisms of IR-induced DSB repair pathway choices can operate in irradiated cells. We first briefly describe the main mechanisms of the major DNA DSB repair pathways and the related key repair proteins. Based on our understanding of the characteristics of IR-induced DNA DSBs and the regulatory mechanisms of DSB repair pathways in irradiated cells and recent advances in this field, We then highlight the main factors and associated challenges to determine the IR-induced DSB repair pathway choices. We conclude that the type and distribution of IR-induced DSBs, chromatin state, DNA-end structure, and DNA-end resection are the main determinants of the choice of the IR-induced DNA DSB repair pathway.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Chikako Kiyohara ◽  
Koichi Takayama ◽  
Yoichi Nakanishi

Genetic variations in DNA repair genes are thought to modulate DNA repair capacity and are suggested to be related to lung cancer risk. We conducted a meta-analysis of epidemiologic studies on the association between genetic polymorphisms in both base excision repair and nucleotide excision repair pathways, and lung cancer. We found xeroderma pigmentosum complementation group A (XPA) G23A (odds ratio (OR)=0.76, 95% confidence interval (CI)=0.61–0.94), 8-oxoguanine DNA glycosylase 1 (OGG1) Ser326Cys (OR=1.22, 95% CI=1.02–1.45), and excision repair cross-complementing group 2 (ERCC2) Lys751Gln (OR=1.27, 95% CI=1.10–1.46) polymorphisms were associated with lung cancer risk. Considering the data available, it can be conjectured that if there is any risk association between a single SNP and lung cancer, the risk fluctuation will probably be minimal. Advances in the identification of new polymorphisms and in high-throughput genotyping techniques will facilitate the analysis of multiple genes in multiple DNA repair pathways. Therefore, it is likely that the defining feature of future epidemiologic studies will be the simultaneous analysis of large samples of cases and controls.


Sign in / Sign up

Export Citation Format

Share Document