scholarly journals Comparative study of a 3CLpro inhibitor and remdesivir against both major SARS-CoV-2 clades in human airway models

Author(s):  
Maren de Vries ◽  
Adil S Mohamed ◽  
Rachel A Prescott ◽  
Ana M Valero-Jimenez ◽  
Ludovic Desvignes ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of Coronavirus Disease 2019 (COVID-19), a pandemic that has claimed over 700,000 human lives. The only SARS-CoV-2 antiviral, for emergency use, is remdesivir, targeting the viral polymerase complex. PF-00835231 is a pre-clinical lead compound with an alternate target, the main SARS-CoV-2 protease 3CLpro (Mpro). Here, we perform a comparative analysis of PF-00835231 and remdesivir in A549+ACE2 cells, using isolates of two major SARS-CoV-2 clades. PF-00835231 is antiviral for both clades, and, in this assay, statistically more potent than remdesivir. A time-of-drug-addition approach delineates the timing of early SARS-CoV-2 life cycle steps and validates PF-00835231’s time of action. Both PF-00835231 and remdesivir potently inhibit SARS-CoV-2 in human polarized airway epithelial cultures. Thus, our study provides in vitro evidence for the potential of PF-00835231 as an effective antiviral for SARS-CoV-2, addresses concerns from non-human in vitro models, and supports further studies with this compound.

2007 ◽  
Vol 88 (11) ◽  
pp. 3067-3077 ◽  
Author(s):  
Kartika Padhan ◽  
Charu Tanwar ◽  
Amjad Hussain ◽  
Pui Yan Hui ◽  
Man Yan Lee ◽  
...  

The orf3a (also called X1 or U274) gene is the largest unique open reading frame in the severe acute respiratory syndrome coronavirus genome and has been proposed to encode a protein with three transmembrane domains and a large cytoplasmic domain. Recent work has suggested that the 3a protein may play a structural role in the viral life cycle, although the mechanisms for this remain uncharacterized. Here, the expression of the 3a protein in various in vitro systems is shown, it has been localized to the Golgi region and its membrane topology in transfected cells has been confirmed. Three potential caveolin-1-binding sites were reported to be present in the 3a protein. By using various biochemical, biophysical and genetic techniques, interaction of the 3a protein with caveolin-1 is demonstrated. Any one of the potential sites in the 3a protein was sufficient for this interaction. These results are discussed with respect to the possible roles of the 3a protein in the viral life cycle.


2016 ◽  
Vol 60 (4) ◽  
pp. 1955-1966 ◽  
Author(s):  
Justyna Ciejka ◽  
Aleksandra Milewska ◽  
Magdalena Wytrwal ◽  
Jacek Wojarski ◽  
Anna Golda ◽  
...  

ABSTRACTNovel sulfonated derivatives of poly(allylamine hydrochloride) (NSPAHs) and N-sulfonated chitosan (NSCH) have been synthesized, and their activity against influenza A and B viruses has been studied and compared with that of a series of carrageenans, marine polysaccharides of well-documented anti-influenza activity. NSPAHs were found to be nontoxic and very soluble in water, in contrast to gel-forming and thus generally poorly soluble carrageenans.In vitroandex vivostudies using susceptible cells (Madin-Darby canine kidney epithelial cells and fully differentiated human airway epithelial cultures) demonstrated the antiviral effectiveness of NSPAHs. The activity of NSPAHs was proportional to the molecular mass of the chain and the degree of substitution of amino groups with sulfonate groups. Mechanistic studies showed that the NSPAHs and carrageenans inhibit influenza A and B virus assembly in the cell.


2016 ◽  
Vol 85 (1) ◽  
Author(s):  
Patrick R. Secor ◽  
Lia A. Michaels ◽  
Kate S. Smigiel ◽  
Maryam G. Rohani ◽  
Laura K. Jennings ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an important opportunistic human pathogen that lives in biofilm-like cell aggregates at sites of chronic infection, such as those that occur in the lungs of patients with cystic fibrosis and nonhealing ulcers. During growth in a biofilm, P. aeruginosa dramatically increases the production of filamentous Pf bacteriophage (Pf phage). Previous work indicated that when in vivo Pf phage production was inhibited, P. aeruginosa was less virulent. However, it is not clear how the production of abundant quantities of Pf phage similar to those produced by biofilms under in vitro conditions affects pathogenesis. Here, using a murine pneumonia model, we show that the production of biofilm-relevant amounts of Pf phage prevents the dissemination of P. aeruginosa from the lung. Furthermore, filamentous phage promoted bacterial adhesion to mucin and inhibited bacterial invasion of airway epithelial cultures, suggesting that Pf phage traps P. aeruginosa within the lung. The in vivo production of Pf phage was also associated with reduced lung injury, reduced neutrophil recruitment, and lower cytokine levels. Additionally, when producing Pf phage, P. aeruginosa was less prone to phagocytosis by macrophages than bacteria not producing Pf phage. Collectively, these data suggest that filamentous Pf phage alters the progression of the inflammatory response and promotes phenotypes typically associated with chronic infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heidi J. Nick ◽  
Pamela L. Zeitlin ◽  
Sangya Yadav ◽  
Preston E. Bratcher

AbstractQuantitation of CFTR function in vitro is commonly performed by acutely stimulating then inhibiting ion transport through CFTR and measuring the resulting changes in transepithelial voltage (Vte) and current (ISC). While this technique is suitable for measuring the maximum functional capacity of CFTR, it may not provide an accurate estimate of in vivo CFTR activity. To test if CFTR-mediated ion transport could be measured in the absence of acute CFTR stimulation, primary airway epithelia were analyzed in an Ussing chamber with treatment of amiloride followed by CFTR(inh)-172 without acute activation of CFTR. Non-CF epithelia demonstrated a decrease in Vte and ISC following exposure to CFTR(inh)-172 and in the absence of forskolin/IBMX (F/I); this decrease is interpreted as a measure of spontaneous CFTR activity present in these epithelia. In F508del/F508del CFTR epithelia, F/I-induced changes in Vte and ISC were ~ fourfold increased after treatment with VX-809/VX-770, while the magnitude of spontaneous CFTR activities were only ~ 1.6-fold increased after VX-809/VX-770 treatment. Method-dependent discrepancies in the responses of other CF epithelia to modulator treatments were observed. These results serve as a proof of concept for the analysis of CFTR modulator responses in vitro in the absence of acute CFTR activation. Future studies will determine the usefulness of this approach in the development of novel CFTR modulator therapies.


2021 ◽  
Author(s):  
Maren de Vries ◽  
Adil S. Mohamed ◽  
Rachel A. Prescott ◽  
Ana M. Valero-Jimenez ◽  
Ludovic Desvignes ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of Coronavirus Disease 2019 (COVID-19). There is a dire need for novel effective antivirals to treat COVID-19, as the only approved direct-acting antiviral to date is remdesivir, targeting the viral polymerase complex. A potential alternate target in the viral life cycle is the main SARS-CoV-2 protease 3CLpro (Mpro). The drug candidate PF-00835231 is the active compound of the first anti-3CLpro regimen in clinical trials. Here, we perform a comparative analysis of PF-00835231, the pre-clinical 3CLpro inhibitor GC-376, and the polymerase inhibitor remdesivir, in alveolar basal epithelial cells modified to express ACE2 (A549+ACE2 cells). We find PF-00835231 with at least similar or higher potency than remdesivir or GC-376. A time-of-drug-addition approach delineates the timing of early SARS-CoV-2 life cycle steps in A549+ACE2 cells and validates PF-00835231’s early time of action. In a model of the human polarized airway epithelium, both PF-00835231 and remdesivir potently inhibit SARS-CoV-2 at low micromolar concentrations. Finally, we show that the efflux transporter P-glycoprotein, which was previously suggested to diminish PF-00835231’s efficacy based on experiments in monkey kidney Vero E6 cells, does not negatively impact PF-00835231 efficacy in either A549+ACE2 cells or human polarized airway epithelial cultures. Thus, our study provides in vitro evidence for the potential of PF-00835231 as an effective SARS-CoV-2 antiviral and addresses concerns that emerged based on prior studies in non-human in vitro models. Importance: The arsenal of SARS-CoV-2 specific antiviral drugs is extremely limited. Only one direct-acting antiviral drug is currently approved, the viral polymerase inhibitor remdesivir, and it has limited efficacy. Thus, there is a substantial need to develop additional antiviral compounds with minimal side effects and alternate viral targets. One such alternate target is its main protease, 3CLpro (Mpro), an essential component of the SARS-CoV-2 life cycle processing the viral polyprotein into the components of the viral polymerase complex. In this study, we characterize a novel antiviral drug, PF-00835231, which is the active component of the first-in-class 3CLpro-targeting regimen in clinical trials. Using 3D in vitro models of the human airway epithelium, we demonstrate the antiviral potential of PF-00835231 for inhibition of SARS-CoV-2.


FEBS Journal ◽  
2007 ◽  
Vol 274 (18) ◽  
pp. 4705-4718 ◽  
Author(s):  
Morgane Régeard ◽  
Charlotte Lepère ◽  
Maud Trotard ◽  
Philippe Gripon ◽  
Jacques Le Seyec

Sign in / Sign up

Export Citation Format

Share Document