scholarly journals Effective control of a viral disease with a high transmission rate through selective predation

2020 ◽  
Author(s):  
Yonggui Chen ◽  
Muhua Wang ◽  
Zhong Zhao ◽  
Shaoping Weng ◽  
Jinchuan Yang ◽  
...  

AbstractDue to the limited understanding of the characteristics of predator-pathogen-prey interactions, few attempts to use selective predation for controlling diseases in prey populations have been successful. The global pandemic of white spot syndrome (WSS), caused by white spot syndrome virus (WSSV), causes devastating economic losses in farmed shrimp production. Currently, there is no effective control for WSS. Here, we determined the transmission dynamics of WSSV and the feeding ability and selectivity of fish on healthy, infected and dead shrimp by experiments and mathematical modeling. Accordingly, we developed a novel and convenient shrimp cultural ecosystem, which that effectively prevented WSS outbreaks, by introducing aquaculture fish species. This provides a scheme for developing control strategies for viral diseases with high transmission rate.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Muhua Wang ◽  
Yonggui Chen ◽  
Zhong Zhao ◽  
Shaoping Weng ◽  
Jinchuan Yang ◽  
...  

AbstractDeveloping ecological approaches for disease control is critical for future sustainable aquaculture development. White spot syndrome (WSS), caused by white spot syndrome virus (WSSV), is the most severe disease in cultured shrimp production. Culturing specific pathogen-free (SPF) broodstock is an effective and widely used strategy for controlling WSS. However, most small-scale farmers, who predominate shrimp aquaculture in developing countries, cannot cultivate SPF shrimp, as they do not have the required infrastructure and skills. Thus, these producers are more vulnerable to WSS outbreaks than industrial farms. Here we developed a shrimp polyculture system that prevents WSS outbreaks by introducing specific fish species. The system is easy to implement and requires no special biosecurity measures. The promotion of this system in China demonstrated that it allowed small-scale farmers to improve their livelihood through shrimp cultivation by controlling WSS outbreaks and increasing the production of ponds.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Chuang Meng ◽  
Ling-Ke Liu ◽  
Dong-Li Li ◽  
Rui-Lin Gao ◽  
Wei-Wei Fan ◽  
...  

ABSTRACT As the most severely lethal viral pathogen for crustaceans in both brackish water and freshwater, white spot syndrome virus (WSSV) has a mechanism of infection that remains largely unknown, which profoundly limits the control of WSSV disease. By using a hematopoietic tissue (Hpt) stem cell culture from the red claw crayfish Cherax quadricarinatus suitable for WSSV propagation in vitro, the intracellular trafficking of live WSSV, in which the acidic-pH-dependent endosomal environment was a prerequisite for WSSV fusion, was determined for the first time via live-cell imaging. When the acidic pH within the endosome was alkalized by chemicals, the intracellular WSSV virions were detained in dysfunctional endosomes, resulting in appreciable blocking of the viral infection. Furthermore, disrupted valosin-containing protein (C. quadricarinatus VCP [CqVCP]) activity resulted in considerable aggregation of endocytic WSSV virions in the disordered endosomes, which subsequently recruited autophagosomes, likely by binding to CqGABARAP via CqVCP, to eliminate the aggregated virions within the dysfunctional endosomes. Importantly, both autophagic sorting and the degradation of intracellular WSSV virions were clearly enhanced in Hpt cells with increased autophagic activity, demonstrating that autophagy played a defensive role against WSSV infection. Intriguingly, most of the endocytic WSSV virions were directed to the endosomal delivery system facilitated by CqVCP activity so that they avoided autophagy degradation and successfully delivered the viral genome into Hpt cell nuclei, which was followed by the propagation of progeny virions. These findings will benefit anti-WSSV target design against the most severe viral disease currently affecting farmed crustaceans. IMPORTANCE White spot disease is currently the most devastating viral disease in farmed crustaceans, such as shrimp and crayfish, and has resulted in a severe ecological problem for both brackish water and freshwater aquaculture areas worldwide. Efficient antiviral control of WSSV disease is still lacking due to our limited knowledge of its pathogenesis. Importantly, research on the WSSV infection mechanism is also quite meaningful for the elucidation of viral pathogenesis and virus-host coevolution, as WSSV is one of the largest animal viruses, in terms of genome size, that infects only crustaceans. Here, we found that most of the endocytic WSSV virions were directed to the endosomal delivery system, strongly facilitated by CqVCP, so that they avoided autophagic degradation and successfully delivered the viral genome into the Hpt cell nucleus for propagation. Our data point to a virus-sorting model that might also explain the escape of other enveloped DNA viruses.


2017 ◽  
Vol 20 (2) ◽  
pp. 98
Author(s):  
Aushia Tanzih Al Haq ◽  
M. Murwantoko ◽  
T. Trijoko ◽  
Nastiti Wijayanti ◽  
Ch. Retna Handayani ◽  
...  

White spot syndrome virus (WSSV) is a devastating viral disease in shrimp aquaculture. Infection ofWSSV in penaeid shrimps affects immune defense and changes gene expression. PmVRP15 has been reported as a part of the WSSV propagation pathway that is highly up-regulated in hemocytes at the acute phase of WSSV infection. This study analyzed the expression of PmVRP15 in local populations of giant tiger shrimp (Penaeus monodon) to be associated with susceptibility to WSSV. Tested populations consisted of an inbreeding population (G8) and outbreeding population (G8iA) from Jepara, Indonesia. Susceptibility was determined by cumulative mortality, median lethal time (LT50), and severity of infection at time of death. Though all populations were susceptible to WSSV, the frst mortality in G8 occurred at 18 hours post-infection (hpi) with mild infection, while frst mortality of G8iA occurred at 30 hpi with severe infection. The LT50 of G8 was signifcantly lower than that of G8iA, indicating that G8iA was less susceptible to WSSV than G8. Relative PmVRP15 transcripts of G8iA were insignifcantly down-regulated, whereas relative PmVRP15 transcripts of G8were insignifcantly upregulated. Although it’s still not conclusive, the results of this study suggest that PmVRP15 has weak potentialas a WSSV susceptibility marker in G8 and G8iA broodstock selection.


Author(s):  
Jacques Naude ◽  
Bruce Mellado ◽  
Joshua Choma ◽  
Fabio Correa ◽  
Salah Dahbi ◽  
...  

Background COVID-19 is a virus which has lead to a global pandemic. Worldwide, more than 130 countries have imposed severe restrictions, which form part of a set of non-pharmaceutical interventions (NPI)s. We aimed to quantify the country-specific effects of these NPIs and compare them using the Oxford COVID-19 Government Response Tracker (OxCGRT) stringency index, p, as a measure of NPI stringency. Methods We developed a dual latent/observable Susceptible Infected Recovered Deaths (SIRD) model and applied it on each of 22 countries and 25 states in the US using publicly available data. The observable model parameters were extracted using kernel functions. The regression of the transmission rate, β, as a function of p in each locale was modeled through the intervention leverage, αs, an initial transmission rate, β0 and a typical adjustment time, br-1. Results The world average for the intervention leverage, αs=0.01 (95% CI 0.0102 - 0.0112) had an ensemble standard deviation of 0.0017 (95% C.I. 0.0014 - 0.0021), strongly indicating a universal behavior. Discussion Our study indicates that removing NPIs too swiftly will result in the resurgence of the spread within one to two months, in alignment with the current WHO recommendations. Moreover, we have quantified and are able to predict the effect of various combinations of NPIs. There is a minimum NPI level, below which leads to resurgence of the outbreak (in the absence of pharmaceutical and clinical advances). For the epidemic to remain sub-critical, the rate with which the intervention leverage αs increases should outpace that of the relaxation of NPIs.


2022 ◽  
Author(s):  
Ashutosh Mahajan ◽  
Namitha Sivadas ◽  
Pooja Panda

The waning effectiveness of the COVID-19 vaccines and the emergence of a new variant Omicron has given rise to the possibility of another outbreak of the infection in India. COVID-19 has caused more than 34 million reported cases and 475 thousand deaths in India so far, and it has affected the country at the root level, socially as well as economically. After going through different control measures, mass vaccination has been achieved to a large extent for the highly populous country, and currently under progress. India has already been hit by a massive second wave of infection in April-June, 2021 mainly due to the delta variant, and might see a third wave in the near future that needs to be controlled with effective control strategies. In this paper, we present a compartmental epidemiological model with vaccinations incorporating the dose-dependent effectiveness. We study a possible sudden outbreak of SARS-CoV2 variants in the future, and bring out the associated predictions for various vaccination rates and point out optimum control measures. Our results show that for transmission rate 30% higher than the current rate due to emergence of new variant or relaxation of social distancing conditions, daily new cases can peak to 250k in March 2022, taking the second dose effectiveness dropping to 50% in the future. A combination of vaccination and controlled lockdown or social distancing is the key to tackling the current situation and for the coming few months. Our simulation results show that social distancing measures show better control over the disease spread than the higher vaccination rates. <br>


2018 ◽  
Vol 6 (26) ◽  
Author(s):  
Leda Restrepo ◽  
Alejandro Reyes ◽  
Leandro Bajaña ◽  
Irma Betancourt ◽  
Bonny Bayot

White spot syndrome virus (WSSV) is the most devastating viral disease affecting cultivated shrimp around the world. Currently, there is no reported genetic information on WSSV affecting Penaeus vannamei in Ecuador.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Emily Nixon ◽  
Ellen Brooks-Pollock ◽  
Richard Wall

AbstractPsoroptic mange (sheep scab), caused by the parasitic mite, Psoroptes ovis, is an important disease of sheep worldwide. It causes chronic animal welfare issues and economic losses. Eradication of scab has proved impossible in many sheep-rearing areas and recent reports of resistance to macrocyclic lactones, a key class of parasiticide, highlight the importance of improving approaches to scab management. To allow this, the current study aimed to develop a stochastic spatial metapopulation model for sheep scab transmission which can be adapted for use in any geographical region, exhibited here using data for Great Britain. The model uses agricultural survey and sheep movement data to geo-reference farms and capture realistic movement patterns. Reported data on sheep scab outbreaks from 1973 to 1991 were used for model fitting with Sequential Monte Carlo Approximate Bayesian Computation methods. The outbreak incidence predicted by the model was from the same statistical distribution as the reported outbreak data ($${\chi }^{2}$$ χ 2 = 115.3, p = 1) and the spatial location of sheep scab outbreaks predicted was positively correlated with the observed outbreak data by county ($$\tau$$ τ = 0.55, p < 0.001), confirming that the model developed is able to accurately capture the number of farms infected in a year, the seasonality of scab incidence and the spatial patterns seen in the data. This model gives insight into the transmission dynamics of sheep scab and will allow the exploration of more effective control strategies.


2021 ◽  
Author(s):  
Namitha A Sivadas ◽  
Ashutosh Mahajan ◽  
Pooja Panda

The waning effectiveness of the COVID-19 vaccines and the emergence of a new variant Omicron has given rise to the possibility of another outbreak of the infection in India. COVID-19 has caused more than 34 million reported cases and 475 thousand deaths in India so far, and it has affected the country at the root level, socially as well as economically. After going through different control measures, mass vaccination has been achieved to a large extent for the highly populous country, and currently under progress. India has already been hit by a massive second wave of infection in April-June, 2021 mainly due to the delta variant, and might see a third wave in the near future that needs to be controlled with effective control strategies. In this paper, we present a compartmental epidemiological model with vaccinations incorporating the dose-dependent effectiveness. We study a possible sudden outbreak of SARS-CoV2 variants in the future, and bring out the associated predictions for various vaccination rates and point out optimum control measures. Our results show that for transmission rate 30% higher than the current rate due to emergence of new variant or relaxation of social distancing conditions, daily new cases can peak to 250k in March 2022, taking the second dose effectiveness dropping to 50% in the future. Combination of vaccination and controlled lockdown or social distancing is the key to tackling the current situation and for the coming few months. Our simulation results show that social distancing measures show better control over the disease spread than the higher vaccination rates.


2020 ◽  
Vol 2 (1) ◽  
pp. 61-62

White spot syndrome virus (WSSV) belongs to a new virus family, Nimaviridae, genus Whispovirus and contains a large circular double-stranded DNA genome of 292,967 bp. WSSV virions are ellipsoid to bacilliform, enveloped particles with a distinctive tail-like appendage at one end. They can be found throughout the body of infected shrimp. The virions contain one nucleocapsid with a typical striated appearance and 5 major and at least 13 minor proteins. WSSV, which was first discovered in Southeast Asia around 1992, is currently the most serious viral pathogen of shrimp worldwide. It causes up to 100% mortality within 7 to 10 days in commercial shrimp farms, resulting in large economic losses amounting to billions of US dollars across different countries to the shrimp farming industry. In a natural situation, shrimp become infected through both oral and water-borne routes, and the gills are thought to be a major point of viral entry. Considering the global economic and sociological importance of shrimp farming and its continued high growth, the development of novel control measures becomes necessary against the outbreak of WSSV. A number of strategies have been used to control WSSV, each with some limitations. Conventional control strategies such as improvement of environmental conditions, stocking of pathogen-free post-larvae, and augmentation of disease resistance by oral immune-stimulants or probiotics are currently employed to control WSSV infection. Use of recombinant viral proteins as vaccines that induce a specific immune response and protection has been demonstrated to control WSSV. Other studies have shown successful vaccination of shrimp with DNA vaccines that have prolonged effects. The RNA interference (RNAi) mediated silencing of targeted viral mRNAs holds tremendous potential for controlling shrimp diseases. The silencing of viruses using RNAi has been experimentally demonstrated for WSSV in shrimp by injecting or feeding synthetic siRNA, long double-stranded RNA (dsRNA), and short/long-hairpin RNA (shRNA/lhRNA) prepared by in vitro transcription or expressed in bacteria. In addition to targeting viral proteins, protection of WSSV has also been achieved by dsRNA targeted against shrimp PmRab7, a protein important for viral entry into the host cells. Antisense constructs offered strong protection in WSSV challenged shrimp, P. monodon, with a corresponding decrease in viral load. Antisense constructs expressing VP24 and VP28 offered the best protection with a consistent reduction in WSSV copy number in both cell culture and in experimental shrimp. The advantage of using antisense constructs is their lack of toxicity and immunogenicity and their high specificity towards the desired target. The usage of edible pellet feed coated with dsRNA against WSSV has shown promising results. Overall, the present investigation clearly demonstrates that it is possible to induce strong protection in shrimp against WSSV infection using host promoter-driven antisense constructs in controlled laboratory-scale experiments. However, it is important to develop a simple and efficient delivery system for extending this study to the field level.


2021 ◽  
Vol 10 (34) ◽  
Author(s):  
Rajendran Kooloth Valappil ◽  
Deepika Anand ◽  
Amod Kulkarni ◽  
Manabesh Mahapatra ◽  
Sanath H. Kumar ◽  
...  

White spot syndrome virus (WSSV) is a pathogen causing significant economic losses to shrimp aquaculture worldwide. Previously, five genome sequences of the virus from farmed shrimp ( Penaeus vannamei and Penaeus monodon ) in India were reported, all originating from farms located on the east coast of the country. Here, we report three new and distinct WSSV genome sequences, two from shrimp ( P. vannamei ) farmed on the west coast of India and the third from the east coast.


Sign in / Sign up

Export Citation Format

Share Document