scholarly journals U-Infuse: Democratization of Customizable AI for Object Detection

2020 ◽  
Author(s):  
Andrew Shepley ◽  
Greg Falzon ◽  
Christopher Lawson ◽  
Paul Meek ◽  
Paul Kwan

SummaryImage data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. There is a strong need to democratise access to deep learning technologies by providing an easy to use software application allowing non-technical users to custom train custom object detectors.U-Infuse addresses this issue by putting the power of AI into the hands of ecologists. U-Infuse provides ecologists with the ability to train customised models using publicly available images and/or their own camera trap images, without the constraints of annotating and pre-processing large numbers of images, or specific technical expertise. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and inference, allowing ecologists to access state of the art AI on their own device, customised to their application without sharing IP or sensitive data.U-Infuse provides ecological practitioners with the ability to (i) easily achieve camera trap object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets.Broad adoption of U-Infuse by ecological practitioners will improve camera trap image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources. Ease of training and reliance on transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2611
Author(s):  
Andrew Shepley ◽  
Greg Falzon ◽  
Christopher Lawson ◽  
Paul Meek ◽  
Paul Kwan

Image data is one of the primary sources of ecological data used in biodiversity conservation and management worldwide. However, classifying and interpreting large numbers of images is time and resource expensive, particularly in the context of camera trapping. Deep learning models have been used to achieve this task but are often not suited to specific applications due to their inability to generalise to new environments and inconsistent performance. Models need to be developed for specific species cohorts and environments, but the technical skills required to achieve this are a key barrier to the accessibility of this technology to ecologists. Thus, there is a strong need to democratize access to deep learning technologies by providing an easy-to-use software application allowing non-technical users to train custom object detectors. U-Infuse addresses this issue by providing ecologists with the ability to train customised models using publicly available images and/or their own images without specific technical expertise. Auto-annotation and annotation editing functionalities minimize the constraints of manually annotating and pre-processing large numbers of images. U-Infuse is a free and open-source software solution that supports both multiclass and single class training and object detection, allowing ecologists to access deep learning technologies usually only available to computer scientists, on their own device, customised for their application, without sharing intellectual property or sensitive data. It provides ecological practitioners with the ability to (i) easily achieve object detection within a user-friendly GUI, generating a species distribution report, and other useful statistics, (ii) custom train deep learning models using publicly available and custom training data, (iii) achieve supervised auto-annotation of images for further training, with the benefit of editing annotations to ensure quality datasets. Broad adoption of U-Infuse by ecological practitioners will improve ecological image analysis and processing by allowing significantly more image data to be processed with minimal expenditure of time and resources, particularly for camera trap images. Ease of training and use of transfer learning means domain-specific models can be trained rapidly, and frequently updated without the need for computer science expertise, or data sharing, protecting intellectual property and privacy.


2020 ◽  
Author(s):  
Andrew Shepley ◽  
Greg Falzon ◽  
Paul Meek ◽  
Paul Kwan

AbstractA time-consuming challenge faced by camera trap practitioners all over the world is the extraction of meaningful data from images to inform ecological management. The primary methods of image processing used by practitioners includes manual analysis and citizen science. An increasingly popular alternative is automated image classification software. However, most automated solutions are not sufficiently robust to be deployed on a large scale. Key challenges include limited access to images for each species and lack of location invariance when transferring models between sites. This prevents optimal use of ecological data and results in significant expenditure of time and resources to annotate and retrain deep learning models.In this study, we aimed to (a) assess the value of publicly available non-iconic FlickR images in the training of deep learning models for camera trap object detection, (b) develop an out-of-the-box location invariant automated camera trap image processing solution for ecologist using deep transfer learning and (c) explore the use of small subsets of camera trap images in optimisation of a FlickR trained deep learning model for high precision ecological object detection.We collected and annotated a dataset of images of “pigs” (Sus scrofa and Phacochoerus africanus) from the consumer image sharing website FlickR. These images were used to achieve transfer learning using a RetinaNet model in the task of object detection. We compared the performance of this model to the performance of models trained on combinations of camera trap images obtained from five different projects, each characterised by 5 different geographical regions. Furthermore, we explored optimisation of the FlickR model via infusion of small subsets of camera trap images to increase robustness in difficult images.In most cases, the mean Average Precision (mAP) of the FlickR trained model when tested on out of sample camera trap sites (67.21-91.92%) was significantly higher than the mAP achieved by models trained on only one geographical location (4.42-90.8%) and rivalled the mAP of models trained on mixed camera trap datasets (68.96-92.75%). The infusion of camera trap images into the FlickR training further improved AP by 5.10-22.32% to 83.60-97.02%.Ecology researchers can use FlickR images in the training of automated deep learning solutions for camera trap image processing to significantly reduce time and resource expenditure by allowing the development of location invariant, highly robust out-of-the-box solutions. This would allow AI technologies to be deployed on a large scale in ecological applications.


2021 ◽  
Vol 11 (12) ◽  
pp. 5694
Author(s):  
Yijin Kim ◽  
Hong Joo Lee ◽  
Junho Shim

In online commerce systems that trade in many products, it is important to classify the products accurately according to the product description. As may be expected, the recent advances in deep learning technologies have been applied to automatic product classification. The efficiency of a deep learning model depends on the training data and the appropriateness of the learning model for the data domain. This is also applicable to deep learning models for automatic product classification. In this study, we propose deep learning models that are conscious of input data comprising text-based product information. Our approaches exploit two well-known deep learning models and integrate them with the processes of input data selection, transformation, and filtering. We demonstrate the practicality of these models through experiments using actual product information data. The experimental results show that the models that systematically consider the input data may differ in accuracy by approximately 30% from those that do not. This study indicates that input data should be sufficiently considered in the development of deep learning models for product classification.


In the recent past, Deep Learning models [1] are predominantly being used in Object Detection algorithms due to their accurate Image Recognition capability. These models extract features from the input images and videos [2] for identification of objects present in them. Various applications of these models include Image Processing, Video analysis, Speech Recognition, Biomedical Image Analysis, Biometric Recognition, Iris Recognition, National Security applications, Cyber Security, Natural Language Processing [3], Weather Forecasting applications, Renewable Energy Generation Scheduling etc. These models utilize the concept of Convolutional Neural Network (CNN) [3], which constitutes several layers of artificial neurons. The accuracy of Deep Learning models [1] depends on various parameters such as ‘Learning-rate’, ‘Training batch size’, ‘Validation batch size’, ‘Activation Function’, ‘Drop-out rate’ etc. These parameters are known as Hyper-Parameters. Object detection accuracy depends on selection of Hyperparameters and these in-turn decides the optimum accuracy. Hence, finding the best values for these parameters is a challenging task. Fine-Tuning is a process used for selection of a suitable Hyper-Parameter value for improvement of object detection accuracy. Selection of an inappropriate Hyper-Parameter value, leads to Over-Fitting or Under-Fitting of data. Over-Fitting is a case, when training data is larger than the required, which results in learning noise and inaccurate object detection. Under-fitting is a case, when the model is unable to capture the trend of the data and which leads to more erroneous results in testing or training data. In this paper, a balance between Over-fitting and Under-fitting is achieved by varying the ‘Learning rate’ of various Deep Learning models. Four Deep Learning Models such as VGG16, VGG19, InceptionV3 and Xception are considered in this paper for analysis purpose. The best zone of Learning-rate for each model, in respect of maximum Object Detection accuracy, is analyzed. In this paper a dataset of 70 object classes is taken and the prediction accuracy is analyzed by changing the ‘Learning-rate’ and keeping the rest of the Hyper-Parameters constant. This paper mainly concentrates on the impact of ‘Learning-rate’ on accuracy and identifies an optimum accuracy zone in Object Detection


2021 ◽  
Author(s):  
Tankred Ott ◽  
Ulrich Lautenschlager

AbstractProper collection and preparation of empirical data still represent one of the most important, but also expensive steps in ecological and evolutionary/systematic research. Modern machine learning approaches, however, have the potential to automate a variety of tasks, which until recently could only be performed manually. Unfortunately, the application of such methods by researchers outside the field is hampered by technical difficulties, some of which, we believe, can be avoided.Here, we present GinJinn2, a user-friendly toolbox for deep learning-based object detection and instance segmentation on image data. Besides providing a convenient command-line interface to existing software libraries, it comprises several additional tools for data handling, pre- and postprocessing, and building advanced analysis pipelines.We demonstrate the application of GinJinn2 for biological purposes using four exemplary analyses, namely the evaluation of seed mixtures, detection of insects on glue traps, segmentation of stomata, and extraction of leaf silhouettes from herbarium specimens.GinJinn2 will enable users with a primary background in biology to apply deep learning-based methods for object detection and segmentation in order to automate feature extraction from image data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Mao ◽  
Jun Kang Chow ◽  
Pin Siang Tan ◽  
Kuan-fu Liu ◽  
Jimmy Wu ◽  
...  

AbstractAutomatic bird detection in ornithological analyses is limited by the accuracy of existing models, due to the lack of training data and the difficulties in extracting the fine-grained features required to distinguish bird species. Here we apply the domain randomization strategy to enhance the accuracy of the deep learning models in bird detection. Trained with virtual birds of sufficient variations in different environments, the model tends to focus on the fine-grained features of birds and achieves higher accuracies. Based on the 100 terabytes of 2-month continuous monitoring data of egrets, our results cover the findings using conventional manual observations, e.g., vertical stratification of egrets according to body size, and also open up opportunities of long-term bird surveys requiring intensive monitoring that is impractical using conventional methods, e.g., the weather influences on egrets, and the relationship of the migration schedules between the great egrets and little egrets.


Author(s):  
Riichi Kudo ◽  
Kahoko Takahashi ◽  
Takeru Inoue ◽  
Kohei Mizuno

Abstract Various smart connected devices are emerging like automated driving cars, autonomous robots, and remote-controlled construction vehicles. These devices have vision systems to conduct their operations without collision. Machine vision technology is becoming more accessible to perceive self-position and/or the surrounding environment thanks to the great advances in deep learning technologies. The accurate perception information of these smart connected devices makes it possible to predict wireless link quality (LQ). This paper proposes an LQ prediction scheme that applies machine learning to HD camera output to forecast the influence of surrounding mobile objects on LQ. The proposed scheme utilizes object detection based on deep learning and learns the relationship between the detected object position information and the LQ. Outdoor experiments show that LQ prediction proposal can well predict the throughput for around 1 s into the future in a 5.6-GHz wireless LAN channel.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


2021 ◽  
Author(s):  
Nithin G R ◽  
Nitish Kumar M ◽  
Venkateswaran Narasimhan ◽  
Rajanikanth Kakani ◽  
Ujjwal Gupta ◽  
...  

Pansharpening is the task of creating a High-Resolution Multi-Spectral Image (HRMS) by extracting and infusing pixel details from the High-Resolution Panchromatic Image into the Low-Resolution Multi-Spectral (LRMS). With the boom in the amount of satellite image data, researchers have replaced traditional approaches with deep learning models. However, existing deep learning models are not built to capture intricate pixel-level relationships. Motivated by the recent success of self-attention mechanisms in computer vision tasks, we propose Pansformers, a transformer-based self-attention architecture, that computes band-wise attention. A further improvement is proposed in the attention network by introducing a Multi-Patch Attention mechanism, which operates on non-overlapping, local patches of the image. Our model is successful in infusing relevant local details from the Panchromatic image while preserving the spectral integrity of the MS image. We show that our Pansformer model significantly improves the performance metrics and the output image quality on imagery from two satellite distributions IKONOS and LANDSAT-8.


2021 ◽  
Vol 23 (06) ◽  
pp. 47-57
Author(s):  
Aditya Kulkarni ◽  
◽  
Manali Munot ◽  
Sai Salunkhe ◽  
Shubham Mhaske ◽  
...  

With the development in technologies right from serial to parallel computing, GPU, AI, and deep learning models a series of tools to process complex images have been developed. The main focus of this research is to compare various algorithms(pre-trained models) and their contributions to process complex images in terms of performance, accuracy, time, and their limitations. The pre-trained models we are using are CNN, R-CNN, R-FCN, and YOLO. These models are python language-based and use libraries like TensorFlow, OpenCV, and free image databases (Microsoft COCO and PAS-CAL VOC 2007/2012). These not only aim at object detection but also on building bounding boxes around appropriate locations. Thus, by this review, we get a better vision of these models and their performance and a good idea of which models are ideal for various situations.


Sign in / Sign up

Export Citation Format

Share Document