scholarly journals A Phase I Study of a PARP1-targeted Topical Fluorophore for the Detection of Oral Cancer

Author(s):  
Paula Demétrio de Souza França ◽  
Susanne Kossatz ◽  
Christian Brand ◽  
Daniella Karassawa Zanoni ◽  
Sheryl Roberts ◽  
...  

AbstractPurposeVisual inspection and biopsy is the current standard of care for oral cancer diagnosis, but is subject to misinterpretation and consequently to misdiagnosis. Topically applied PARPi-FL is a molecularly specific, fluorescent contrast-based approach that may fulfil the unmet need for a simple, in vivo, non-invasive, cost-effective, point-of-care method for the early diagnosis of oral cancer. Here, we present results from a phase I safety and feasibility study on fluorescent, topically applied PARPi-FL.Patients and MethodsTwelve patients with a histologically proven squamous cell carcinoma of the oral cavity (OSCC) gargled a PARPi-FL solution for 60 seconds (15 mL, 100 nM, 250 nM, 500 nM, or 1000 nM), followed by gargling a clearing solution for 60 seconds. Fluorescence measurements of the lesion and surrounding oral mucosa were taken before PARPi-FL application, after PARPi-FL application and after clearing. Blood pressure, oxygen levels, clinical chemistry and CBC were obtained before and after tracer administration.ResultsPARPi-FL was well-tolerated by all patients without any safety concerns. When analyzing the fluorescence signal, all malignant lesions showed a significant differential in contrast after administration of PARPi-FL, with the highest increase occurring at the highest dose level (1000 nM), where all patients had a tumor-to-margin fluorescence signal ratio of > 3. A clearing step was essential to increase signal specificity, as it clears unbound PARPi-FL trapped in normal anatomical structures. PARPi-FL tumor cell specificity was confirmed by ex vivo tabletop confocal microscopy. We have demonstrated that the fluorescence signal arose from the nuclei of tumor cells, endorsing our macroscopic findings.ConclusionsA PARPi-FL swish & spit solution is a rapid and non-invasive diagnostic tool that preferentially localizes fluorescent contrast to OSCC. This technique holds promise for the early detection of OSCC based on in vivo optical evaluation and targeted biopsy of suspicious lesions in the oral cavity.Translational RelevanceDespite their accessible location, oral cavity cancers are often diagnosed late, especially in low-resource areas where their incidence is typically high. The high prevalence of premalignant and benign oral lesions in these populations contributes to a number of issues that make early detection of oral cancer difficult: even in experienced hands, it can be difficult to differentiate cancer from premalignant or benign lesions during routine clinical examination; and biopsy-based histopathology, the current standard of care, is invasive, prone to sampling error, and requires geographic access to appropriate health care professionals, including a highly trained pathologist. While seemingly impenetrable economic and infrastructure barriers have confounded the early diagnosis of oral cancer for most of the world’s population, these could be circumvented by a simple, in vivo, non-invasive, cost-effective, point-of-care method of diagnosis. We are attempting to address this unmet clinical need by using topically applied PARPi-FL — a molecularly specific, fluorescent contrast-based approach — to detect oral cancer.FundingThis work was supported by National Institutes of Health grants P30 CA008748, R01 CA204441 (TR) and R43 CA228815 (CB and TR). Dr. Valero was sponsored by a grant from Fundación Alfonso Martín Escudero. The funding sources were not involved in study design, data collection and analysis, writing of the report, or the decision to submit this article for publication.Disclosure of Potential Conflicts of InterestC.B., S.K., S.P. and T.R. are shareholders of Summit Biomedical Imaging, LLC. S.K., S.P. and T.R. are co-inventors on PCT application WO2016164771. T.R. is co-inventor on PCT application WO2012074840. T.R. is a paid consultant for Theragnostics, Inc. All the other authors have no relevant conflict to declare. This arrangement has been reviewed and approved by Memorial Sloan Kettering Cancer Center in accordance with its conflict of interest policies.

2021 ◽  
Author(s):  
Paula Demetrio de Souza Franca ◽  
Susanne Kossatz ◽  
Christian Brand ◽  
Daniella Karassawa Zanoni ◽  
Sheryl Roberts ◽  
...  

Abstract Background. Visual inspection and biopsy is the current standard of care for oral cancer diagnosis, but is subject to misinterpretation and consequently to misdiagnosis. Topically applied PARPi-FL is a molecularly specific, fluorescent contrast-based approach that may fulfil the unmet need for a simple, in vivo, non-invasive, cost-effective, point-of-care method for the early diagnosis of oral cancer. Here, we present results from a phase I safety and feasibility study on fluorescent, topically applied PARPi-FL. Twelve patients with a histologically proven squamous cell carcinoma of the oral cavity (OSCC) gargled a PARPi-FL solution for 60 seconds (15 mL, 100 nM, 250 nM, 500 nM, or 1000 nM), followed by gargling a clearing solution for 60 seconds. Fluorescence measurements of the lesion and surrounding oral mucosa were taken before PARPi-FL application, after PARPi-FL application and after clearing. Blood pressure, oxygen levels, clinical chemistry and CBC were obtained before and after tracer administration. Results. PARPi-FL was well-tolerated by all patients without any safety concerns. When analyzing the fluorescence signal, all malignant lesions showed a significant differential in contrast after administration of PARPi-FL, with the highest increase occurring at the highest dose level (1000 nM), where all patients had a tumor-to-margin fluorescence signal ratio of > 3. A clearing step was essential to increase signal specificity, as it clears unbound PARPi-FL trapped in normal anatomical structures. PARPi-FL tumor cell specificity was confirmed by ex vivo tabletop confocal microscopy. We have demonstrated that the fluorescence signal arose from the nuclei of tumor cells, endorsing our macroscopic findings.Conclusions. A PARPi-FL swish & spit solution is a rapid and non-invasive diagnostic tool that preferentially localizes fluorescent contrast to OSCC. This technique holds promise for the early detection of OSCC based on in vivo optical evaluation and targeted biopsy of suspicious lesions in the oral cavity. Clinicaltrials.gov - NCT03085147, registered on March 21st, 2017.


2019 ◽  
Vol 21 (3) ◽  
pp. 293-299
Author(s):  
Amanda Guido ◽  
Sheng Zhang ◽  
Cheng Yang ◽  
Laura Pook

Introduction: Over one billion intravascular devices are used worldwide, annually. Due to the associated complications with these devices, the development of a reliable yet cost-effective securement technique is extremely important. The purpose of this study is to demonstrate the strength of a novel catheter securement cyanoacrylate for securing peripheral venous catheters, central venous catheters, peripherally inserted central catheters, and all other intravascular catheter types. Materials and methods: An unprecedented in vitro method was performed to quantify and compare the strength of a novel cyanoacrylate product when securing intravascular catheters inserted into prepared porcine skin. In vivo, canine subjects were used to implant various types of catheters. These catheters were secured with a novel catheter securement cyanoacrylate to test the strength and durability while undergoing simulated clinical stresses. Results: In vitro, the catheter securement cyanoacrylate demonstrated superior strength over conventional catheter securement methods as well as other known cyanoacrylates. The catheter securement cyanoacrylate demonstrated the ability to maintain superior strength for up to 7 days. In vivo, the catheter securement cyanoacrylate demonstrated the ability to withstand five weight tugs per hour for a 3-h duration, alone, while securing three types of catheters in canine subjects. Conclusion: This is one of the first studies to provide quantitative data to support the use of cyanoacrylate for intravascular catheter securement. The results from this research suggest that the novel catheter securement cyanoacrylate can be a simple and cost-effective catheter securement device that can improve the current health care protocol for intravascular catheterization.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Andreas Wartak ◽  
John G. Garber ◽  
Qian Yuan ◽  
Wayne G. Shreffler ◽  
Paul E. Hesterberg ◽  
...  

AbstractHistopathologic analysis of biopsy specimens obtained via white light endoscopy (WLE) is the gold standard for the diagnosis of several mucosal diseases in the upper gastrointestinal (GI) tract. However, this standard of care entails a series of critical shortcomings such as missing depth information, high costs, time inefficiency, low-resolution imaging in vivo, high sampling variability, missing intrinsic tissue-specific contrast, and anesthesia related risk. In the quest for a diagnostic technology to replace the current standard of care, in vivo optical endomicroscopy has emerged as a promising alternative. This paper tells the story of a cluster of optical microscopy-based modalities invented, further developed, or first-validated in the laboratory of Dr. Guillermo J. Tearney (Tearney Lab) at the Wellman Center for Photomedicine of Massachusetts General Hospital over the past two decades, that combined lead to a novel method for diagnosis of eosinophilic esophagitis (EoE). Rather than being a comprehensive literature review, this paper aims to describe the translational journey towards a disease specific diagnostic and research tool for this increasingly recognized yet poorly understood immune-mediated disorder of the esophagus.


2008 ◽  
Vol 54 (2) ◽  
pp. 264-272 ◽  
Author(s):  
John W McMurdy ◽  
Gregory D Jay ◽  
Selim Suner ◽  
Gregory Crawford

Abstract Background: Anemia is an underdiagnosed, significant public health concern afflicting >2 billion people worldwide. The detrimental effects of tissue oxygen deficiency on the cardiovascular system and concurrent appearance of anemia with numerous high-risk disorders highlight the importance of clinical screening. Currently there is no universally accepted, clinically applicable, noninvasive hemoglobin/hematocrit screening tool. The need for such a device has prompted an investigation into a breadth of techniques. Methods: A synopsis of the literature and current directions of research in noninvasive total hemoglobin measurement was collected. Contributions highlighted in this review are limited to those studies conducted with a clinical aspect, and most include in vivo patient studies. Results: The review of potential techniques presented here includes optoacoustic spectroscopy, spectrophotometric imaging, diffuse reflectance spectroscopy, transcutaneous illumination, electrical admittance plethysmography, and photoplethysmography. The technological performance, relative benefits of each approach, potential instrumentation design considerations, and future directions are discussed in each subcategory. Conclusions: Many techniques reviewed here have shown excellent accuracy, sensitivity, and specificity in measuring hemoglobin/hematocrit, thus in the near future a new clinically viable tool for noninvasive hemoglobin/hematocrit monitoring will likely be widely used for patient care. Limiting factors in clinical adoption will likely involve technology integration into the current standard of care in each field routinely dealing with anemia.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weixian Xi ◽  
Vishal Hegde ◽  
Stephen D. Zoller ◽  
Howard Y. Park ◽  
Christopher M. Hart ◽  
...  

AbstractImplant related infections are the most common cause of joint arthroplasty failure, requiring revision surgeries and a new implant, resulting in a cost of $8.6 billion annually. To address this problem, we created a class of coating technology that is applied in the operating room, in a procedure that takes less than 10 min, and can incorporate any desired antibiotic. Our coating technology uses an in situ coupling reaction of branched poly(ethylene glycol) and poly(allyl mercaptan) (PEG-PAM) polymers to generate an amphiphilic polymeric coating. We show in vivo efficacy in preventing implant infection in both post-arthroplasty infection and post-spinal surgery infection mouse models. Our technology displays efficacy with or without systemic antibiotics, the standard of care. Our coating technology is applied in a clinically relevant time frame, does not require modification of implant manufacturing process, and does not change the implant shelf life.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Robert Dennis ◽  
John Dennis

Renal failure is a leading cause of suffering and death in domestic cats, with approximately 1 in 3 cats affected.  Current standard-of-care treatment usually involves palliative care, diets restricted in protein and phosphorus, plenty of fluids, and sometimes vitamin D and Omega-3.  But even with early detection, which is difficult, treatment options are limited and often are not very effective.  Dietary restrictions and palliative care are often the best that can be offered, but the creatinine levels tend to inexorably creep upward toward eventual kidney failure and death.  We report the effectiveness of the use of a low-frequency, low-intensity, non-invasive treatment using Pulsed Electro-Magnetic Fields, specifically tuned to inductively generate micro-electric currents in deep tissues (ICES®-PEMF).  This report chronicles the return to normal and then reversion to renal insufficiency in a single cat, when ICES®-PEMF was applied, then withheld, then applied again, over three cycles of application and non-application, over a 5-year period. A return to normal creatinine levels, with a subsequent return to renal insufficiency as indicated by loss of control of creatinine, correlated precisely with the application and non-application of ICES®-PEMF.  The pattern observed during each cycle was as follows:  when applied 2 to 3 times weekly for 20-60 minutes each treatment, creatinine levels declined to normal range within 2-3 months.  During periods when treatment was discontinued, creatinine levels began to climb to high levels again.  We suggest the further study and potential use of ICES®-PEMF as an effective, inexpensive, safe, non-invasive treatment for feline kidney disease.


Author(s):  
Lauren S. Y. Wood ◽  
Janene H. Fuerch ◽  
Carl L. Dambkowski ◽  
Eric F. Chehab ◽  
Shivani Torres ◽  
...  

Abstract Objective Umbilical central lines deliver life-saving medications and nutrition for neonates; however, complications associated with umbilical catheters (UCs) occur more frequently than in adults with central lines (i.e., line migration, systemic infection). We have developed a device for neonatal UC protection and stabilization to reduce catheter exposure to bacteria compared with the standard of care: “goal post” tape configuration. This study analyzes the effect of device venting and material on bacterial load of human umbilical cords in vitro. Study Design Catheters were inserted into human umbilical cord segments in vitro, secured with plastic or silicone vented prototype versus tape, and levels of bacterial colonization were compared between groups after 7 days of incubation. Results Nonvented plastic prototype showed increased bacterial load compared with goal post (p = 0.04). Colonization was comparable between the goal post and all vented plastic prototypes (p ≥ 0.30) and when compared with the vented silicone device (p = 1). Conclusion A novel silicone device does not increase external bacterial colonization compared with the current standard of care for line securement, and may provide a safe, convenient alternative to standard adhesive tape for UC stabilization. Future studies are anticipated to establish safety in vivo, alongside benefits such as migration and infection reduction.


2011 ◽  
Vol 34 (3) ◽  
pp. 81-98 ◽  
Author(s):  
Jonathan T. C. Liu ◽  
Nathan O. Loewke ◽  
Michael J. Mandella ◽  
Richard M. Levenson ◽  
James M. Crawford ◽  
...  

Advances in optical designs are enabling the development of miniature microscopes that can examine tissue in situ for early anatomic and molecular indicators of disease, in real time, and at cellular resolution. These new devices will lead to major changes in how diseases are detected and managed, driving a shift from today's diagnostic paradigm of biopsy followed by histopathology and recommended therapy, to non-invasive point-of-care diagnosis with possible same-session definitive treatment. This shift may have major implications for the training requirements of future physicians to enable them to interpret real-timein vivomicroscopic data, and will also shape the emerging fields of telepathology and telemedicine. Implementation of new technologies into clinical practice is a complex process that requires bridging gaps between clinicians, engineers and scientists. This article provides a forward-looking discussion of these issues, with a focus on malignant and pre-malignant lesions, by first highlighting some of the clinical areas where point-of-carein vivomicroscopy could address unmet needs, and then by reviewing the technological challenges that are being addressed, or need to be addressed, forin vivomicroscopy to become a standard clinical tool.


2021 ◽  
Author(s):  
Qiu Meiyu ◽  
Li Pei

Clustered regularly interspaced short palindromic repeats (CRISPR) technology, an easy, rapid, cost-effective, and precise gene-editing technique, has revolutionized diagnostics and gene therapy. Fast and accurate diagnosis of diseases is essential for point-of-care-testing (POCT) and specialized medical institutes. The CRISPR-associated (Cas) proteins system shed light on the new diagnostics methods at point-of-care (POC) owning to its advantages. In addition, CRISPR/Cas-based gene-editing technology has led to various breakthroughs in gene therapy. It has been employed in clinical trials for a variety of untreatable diseases, including cancer, blood disorders, and other syndromes. Currently, the clinical application of CRISPR/Cas has been mainly focused on ex vivo therapies. Recently, tremendous efforts have been made in the development of ex vivo gene therapy based on CRISPR-Cas9. Despite these efforts, in vivo CRISPR/Cas gene therapy is only in its initial stage. Here, we review the milestones of CRISPR/Cas technologies that advanced the field of diagnostics and gene therapy. We also highlight the recent advances of diagnostics and gene therapy based on CRISPR/Cas technology. In the last section, we discuss the strength and significant challenges of the CRISPR/Cas technology for its future clinical usage in diagnosis and gene therapy.


Sign in / Sign up

Export Citation Format

Share Document