scholarly journals In vivo optical endomicroscopy: two decades of translational research towards next generation diagnosis of eosinophilic esophagitis

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Andreas Wartak ◽  
John G. Garber ◽  
Qian Yuan ◽  
Wayne G. Shreffler ◽  
Paul E. Hesterberg ◽  
...  

AbstractHistopathologic analysis of biopsy specimens obtained via white light endoscopy (WLE) is the gold standard for the diagnosis of several mucosal diseases in the upper gastrointestinal (GI) tract. However, this standard of care entails a series of critical shortcomings such as missing depth information, high costs, time inefficiency, low-resolution imaging in vivo, high sampling variability, missing intrinsic tissue-specific contrast, and anesthesia related risk. In the quest for a diagnostic technology to replace the current standard of care, in vivo optical endomicroscopy has emerged as a promising alternative. This paper tells the story of a cluster of optical microscopy-based modalities invented, further developed, or first-validated in the laboratory of Dr. Guillermo J. Tearney (Tearney Lab) at the Wellman Center for Photomedicine of Massachusetts General Hospital over the past two decades, that combined lead to a novel method for diagnosis of eosinophilic esophagitis (EoE). Rather than being a comprehensive literature review, this paper aims to describe the translational journey towards a disease specific diagnostic and research tool for this increasingly recognized yet poorly understood immune-mediated disorder of the esophagus.

2008 ◽  
Vol 54 (2) ◽  
pp. 264-272 ◽  
Author(s):  
John W McMurdy ◽  
Gregory D Jay ◽  
Selim Suner ◽  
Gregory Crawford

Abstract Background: Anemia is an underdiagnosed, significant public health concern afflicting >2 billion people worldwide. The detrimental effects of tissue oxygen deficiency on the cardiovascular system and concurrent appearance of anemia with numerous high-risk disorders highlight the importance of clinical screening. Currently there is no universally accepted, clinically applicable, noninvasive hemoglobin/hematocrit screening tool. The need for such a device has prompted an investigation into a breadth of techniques. Methods: A synopsis of the literature and current directions of research in noninvasive total hemoglobin measurement was collected. Contributions highlighted in this review are limited to those studies conducted with a clinical aspect, and most include in vivo patient studies. Results: The review of potential techniques presented here includes optoacoustic spectroscopy, spectrophotometric imaging, diffuse reflectance spectroscopy, transcutaneous illumination, electrical admittance plethysmography, and photoplethysmography. The technological performance, relative benefits of each approach, potential instrumentation design considerations, and future directions are discussed in each subcategory. Conclusions: Many techniques reviewed here have shown excellent accuracy, sensitivity, and specificity in measuring hemoglobin/hematocrit, thus in the near future a new clinically viable tool for noninvasive hemoglobin/hematocrit monitoring will likely be widely used for patient care. Limiting factors in clinical adoption will likely involve technology integration into the current standard of care in each field routinely dealing with anemia.


Author(s):  
Lauren S. Y. Wood ◽  
Janene H. Fuerch ◽  
Carl L. Dambkowski ◽  
Eric F. Chehab ◽  
Shivani Torres ◽  
...  

Abstract Objective Umbilical central lines deliver life-saving medications and nutrition for neonates; however, complications associated with umbilical catheters (UCs) occur more frequently than in adults with central lines (i.e., line migration, systemic infection). We have developed a device for neonatal UC protection and stabilization to reduce catheter exposure to bacteria compared with the standard of care: “goal post” tape configuration. This study analyzes the effect of device venting and material on bacterial load of human umbilical cords in vitro. Study Design Catheters were inserted into human umbilical cord segments in vitro, secured with plastic or silicone vented prototype versus tape, and levels of bacterial colonization were compared between groups after 7 days of incubation. Results Nonvented plastic prototype showed increased bacterial load compared with goal post (p = 0.04). Colonization was comparable between the goal post and all vented plastic prototypes (p ≥ 0.30) and when compared with the vented silicone device (p = 1). Conclusion A novel silicone device does not increase external bacterial colonization compared with the current standard of care for line securement, and may provide a safe, convenient alternative to standard adhesive tape for UC stabilization. Future studies are anticipated to establish safety in vivo, alongside benefits such as migration and infection reduction.


2020 ◽  
Author(s):  
Paula Demétrio de Souza França ◽  
Susanne Kossatz ◽  
Christian Brand ◽  
Daniella Karassawa Zanoni ◽  
Sheryl Roberts ◽  
...  

AbstractPurposeVisual inspection and biopsy is the current standard of care for oral cancer diagnosis, but is subject to misinterpretation and consequently to misdiagnosis. Topically applied PARPi-FL is a molecularly specific, fluorescent contrast-based approach that may fulfil the unmet need for a simple, in vivo, non-invasive, cost-effective, point-of-care method for the early diagnosis of oral cancer. Here, we present results from a phase I safety and feasibility study on fluorescent, topically applied PARPi-FL.Patients and MethodsTwelve patients with a histologically proven squamous cell carcinoma of the oral cavity (OSCC) gargled a PARPi-FL solution for 60 seconds (15 mL, 100 nM, 250 nM, 500 nM, or 1000 nM), followed by gargling a clearing solution for 60 seconds. Fluorescence measurements of the lesion and surrounding oral mucosa were taken before PARPi-FL application, after PARPi-FL application and after clearing. Blood pressure, oxygen levels, clinical chemistry and CBC were obtained before and after tracer administration.ResultsPARPi-FL was well-tolerated by all patients without any safety concerns. When analyzing the fluorescence signal, all malignant lesions showed a significant differential in contrast after administration of PARPi-FL, with the highest increase occurring at the highest dose level (1000 nM), where all patients had a tumor-to-margin fluorescence signal ratio of > 3. A clearing step was essential to increase signal specificity, as it clears unbound PARPi-FL trapped in normal anatomical structures. PARPi-FL tumor cell specificity was confirmed by ex vivo tabletop confocal microscopy. We have demonstrated that the fluorescence signal arose from the nuclei of tumor cells, endorsing our macroscopic findings.ConclusionsA PARPi-FL swish & spit solution is a rapid and non-invasive diagnostic tool that preferentially localizes fluorescent contrast to OSCC. This technique holds promise for the early detection of OSCC based on in vivo optical evaluation and targeted biopsy of suspicious lesions in the oral cavity.Translational RelevanceDespite their accessible location, oral cavity cancers are often diagnosed late, especially in low-resource areas where their incidence is typically high. The high prevalence of premalignant and benign oral lesions in these populations contributes to a number of issues that make early detection of oral cancer difficult: even in experienced hands, it can be difficult to differentiate cancer from premalignant or benign lesions during routine clinical examination; and biopsy-based histopathology, the current standard of care, is invasive, prone to sampling error, and requires geographic access to appropriate health care professionals, including a highly trained pathologist. While seemingly impenetrable economic and infrastructure barriers have confounded the early diagnosis of oral cancer for most of the world’s population, these could be circumvented by a simple, in vivo, non-invasive, cost-effective, point-of-care method of diagnosis. We are attempting to address this unmet clinical need by using topically applied PARPi-FL — a molecularly specific, fluorescent contrast-based approach — to detect oral cancer.FundingThis work was supported by National Institutes of Health grants P30 CA008748, R01 CA204441 (TR) and R43 CA228815 (CB and TR). Dr. Valero was sponsored by a grant from Fundación Alfonso Martín Escudero. The funding sources were not involved in study design, data collection and analysis, writing of the report, or the decision to submit this article for publication.Disclosure of Potential Conflicts of InterestC.B., S.K., S.P. and T.R. are shareholders of Summit Biomedical Imaging, LLC. S.K., S.P. and T.R. are co-inventors on PCT application WO2016164771. T.R. is co-inventor on PCT application WO2012074840. T.R. is a paid consultant for Theragnostics, Inc. All the other authors have no relevant conflict to declare. This arrangement has been reviewed and approved by Memorial Sloan Kettering Cancer Center in accordance with its conflict of interest policies.


2019 ◽  
Vol 21 (3) ◽  
pp. 293-299
Author(s):  
Amanda Guido ◽  
Sheng Zhang ◽  
Cheng Yang ◽  
Laura Pook

Introduction: Over one billion intravascular devices are used worldwide, annually. Due to the associated complications with these devices, the development of a reliable yet cost-effective securement technique is extremely important. The purpose of this study is to demonstrate the strength of a novel catheter securement cyanoacrylate for securing peripheral venous catheters, central venous catheters, peripherally inserted central catheters, and all other intravascular catheter types. Materials and methods: An unprecedented in vitro method was performed to quantify and compare the strength of a novel cyanoacrylate product when securing intravascular catheters inserted into prepared porcine skin. In vivo, canine subjects were used to implant various types of catheters. These catheters were secured with a novel catheter securement cyanoacrylate to test the strength and durability while undergoing simulated clinical stresses. Results: In vitro, the catheter securement cyanoacrylate demonstrated superior strength over conventional catheter securement methods as well as other known cyanoacrylates. The catheter securement cyanoacrylate demonstrated the ability to maintain superior strength for up to 7 days. In vivo, the catheter securement cyanoacrylate demonstrated the ability to withstand five weight tugs per hour for a 3-h duration, alone, while securing three types of catheters in canine subjects. Conclusion: This is one of the first studies to provide quantitative data to support the use of cyanoacrylate for intravascular catheter securement. The results from this research suggest that the novel catheter securement cyanoacrylate can be a simple and cost-effective catheter securement device that can improve the current health care protocol for intravascular catheterization.


Blood ◽  
2021 ◽  
Author(s):  
Xiaobing Yu ◽  
Leonel Munoz-Sagredo ◽  
Karolin Streule ◽  
Patricia Muschong ◽  
Elisabeth Bayer ◽  
...  

Acute myeloid leukemia (AML) has a poor prognosis under the current standard of care. In recent years, venetoclax, a BCL-2 inhibitor, was approved to treat patients, ineligible for intensive induction chemotherapy. Complete remission rates with venetoclax-based therapies are, however, hampered by minimal residual disease (MRD) in a proportion of patients, leading to relapse. MRD is due to leukemic stem cells retained in bone marrow protective environments; activation of the CXCL12/CXCR4 pathway was shown to be relevant to this process. An important role is also played by cell adhesion molecules such as CD44, which has been shown to be crucial for AML development. Here we show that CD44 is involved in CXCL12 promotion of resistance to venetoclax-induced apoptosis in human AML cell lines and AML patient samples which could be abrogated by CD44 knockdown, knockout or blocking with an anti-CD44 antibody. Split-Venus biomolecular fluorescence complementation showed that CD44 and CXCR4 physically associate at the cell membrane upon CXCL12 induction. In the venetoclax-resistant OCI-AML3 cell line, CXCL12 promoted an increase in the proportion of cells expressing high levels of embryonic-stem-cell core transcription factors (ESC-TFs: Sox2, Oct4, Nanog), abrogated by CD44 knockdown. This ESC-TF-expressing subpopulation which could be selected by venetoclax treatment, exhibited a basally-enhanced resistance to apoptosis, and expressed higher levels of CD44. Finally, we developed a novel AML xenograft model in zebrafish, showing that CD44 knockout sensitizes OCI-AML3 cells to venetoclax treatment in vivo. Our study shows that CD44 is a potential molecular target to sensitize AML cells to venetoclax-based therapies.


2015 ◽  
Vol 59 (8) ◽  
pp. 4845-4855 ◽  
Author(s):  
Malvika Kaul ◽  
Lilly Mark ◽  
Yongzheng Zhang ◽  
Ajit K. Parhi ◽  
Yi Lisa Lyu ◽  
...  

ABSTRACTThe clinical development of FtsZ-targeting benzamide compounds like PC190723 has been limited by poor drug-like and pharmacokinetic properties. Development of prodrugs of PC190723 (e.g., TXY541) resulted in enhanced pharmaceutical properties, which, in turn, led to improved intravenous efficacy as well as the first demonstration of oral efficacyin vivoagainst both methicillin-sensitiveStaphylococcus aureus(MSSA) and methicillin-resistantS. aureus(MRSA). Despite being efficaciousin vivo, TXY541 still suffered from suboptimal pharmacokinetics and the requirement of high efficacious doses. We describe here the design of a new prodrug (TXA709) in which the Cl group on the pyridyl ring has been replaced with a CF3functionality that is resistant to metabolic attack. As a result of this enhanced metabolic stability, the product of the TXA709 prodrug (TXA707) is associated with improved pharmacokinetic properties (a 6.5-fold-longer half-life and a 3-fold-greater oral bioavailability) and superiorin vivoantistaphylococcal efficacy relative to PC190723. We validate FtsZ as the antibacterial target of TXA707 and demonstrate that the compound retains potent bactericidal activity againstS. aureusstrains resistant to the current standard-of-care drugs vancomycin, daptomycin, and linezolid. These collective properties, coupled with minimal observed toxicity to mammalian cells, establish the prodrug TXA709 as an antistaphylococcal agent worthy of clinical development.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1177 ◽  
Author(s):  
Cintia Carla da Hora ◽  
Markus W. Schweiger ◽  
Thomas Wurdinger ◽  
Bakhos A. Tannous

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults associated with a poor survival. Current standard of care consists of surgical resection followed by radiation and chemotherapy. GBMs are highly heterogeneous, having a complex interaction among different cells within the tumor as well as the tumor microenvironment. One of the main challenges in the neuro-oncology field in general, and GBM in particular, is to find an optimum culture condition that maintains the molecular genotype and phenotype as well as heterogeneity of the original tumor in vitro and in vivo. Established cell lines were shown to be a poor model of the disease, failing to recapitulate the phenotype and harboring non-parental genotypic mutations. Given the growing understanding of GBM biology, the discovery of glioma cancer stem-like cells (GSCs), and their role in tumor formation and therapeutic resistance, scientists are turning more towards patient-derived cells and xenografts as a more representative model. In this review, we will discuss the current state of patient-derived GSCs and their xenografts; and provide an overview of different established models to study GBM biology and to identify novel therapeutics in the pre-clinical phase.


2020 ◽  
Vol 2 (Supplement_2) ◽  
pp. ii7-ii7
Author(s):  
Agata Kieliszek ◽  
Chitra Venugopal ◽  
Blessing Bassey-Archibong ◽  
Nikoo Aghaei ◽  
Fred Lam ◽  
...  

Abstract BACKGROUND The incidence of brain metastases (BM) is tenfold higher than primary brain tumors. BM commonly originate from primary lung, breast, and melanoma tumors with a 90% mortality rate within one year of diagnosis. Current standard of care for BM includes surgical resection with concurrent chemoradiation, but does not extend median survival past 16 months, posing a large unmet need to identify novel therapies against BM. METHODS From a large in-house biobank of patient-derived BM cell lines, the Singh Lab has generated murine orthotopic patient-derived xenograft (PDX) models of lung, breast, and melanoma BM that recapitulate the stages of BM progression as seen in human patients. Using these three PDX models, we identified a population of “pre-metastatic” brain metastasis-initiating cells (BMICs) that are newly arrived in the brain but have yet to form detectable tumors. Pre-metastatic BMICs are not detectable in human patients but are important therapeutic targets with the potential to prevent BM in at-risk patients. RESULTS RNA sequencing of pre-metastatic BMICs from all three PDX primary tumor models with subsequent Connectivity Map analysis identified novel compounds that have the potential of killing all three types of BMICs. In particular, we identified two compounds that have selective killing of BMICs in vitro from all three primary tumor cohorts while sparing non-cancerous cells. We further characterized their ability to inhibit the self-renewal and proliferative properties of BMICs. Ongoing in vivo work will investigate the compounds’ preclinical utilities in preventing BM. CONCLUSION Identification of novel small molecules that target BMICs could prevent the formation of BM completely and dramatically improve the prognosis of at-risk cancer patients.


2020 ◽  
Vol 8 (1) ◽  
pp. e000345 ◽  
Author(s):  
Dipongkor Saha ◽  
Samuel D Rabkin ◽  
Robert L Martuza

BackgroundTemozolomide (TMZ) chemotherapy is a current standard of care for glioblastoma (GBM), however it has only extended overall survival by a few months. Because it also modulates the immune system, both beneficially and negatively, understanding how TMZ interacts with immunotherapeutics is important. Oncolytic herpes simplex virus (oHSV) is a new class of cancer therapeutic with both cytotoxic and immunostimulatory activities. Here, we examine the combination of TMZ and an oHSV encoding murine interleukin 12, G47Δ-mIL12, in a mouse immunocompetent GBM model generated from non-immunogenic 005 GBM stem-like cells (GSCs.MethodsWe first investigated the cytotoxic effects of TMZ and/or G47Δ-IL12 treatments in vitro, and then the antitumor effects of combination therapy in vivo in orthotopically implanted 005 GSC-derived brain tumors. To improve TMZ sensitivity, O6-methylguanine DNA methyltransferase (MGMT) was inhibited. The effects of TMZ on immune cells were evaluated by flow cytometery and immunohistochemistry.ResultsThe combination of TMZ+G47Δ-IL12 kills 005 GSCs in vitro better than single treatments. However, TMZ does not improve the survival of orthotopic tumor-bearing mice treated with G47Δ-IL12, but rather can abrogate the beneficial effects of G47Δ-IL12 when the two are given concurrently. TMZ negatively affects intratumor T cells and macrophages and splenocytes. Addition of MGMT inhibitor O6-benzylguanine (O6-BG), an inactivating pseudosubstrate of MGMT, to TMZ improved survival, but the combination with G47Δ-IL12 did not overcome the antagonistic effects of TMZ treatment on oHSV therapy.ConclusionsThese results illustrate that chemotherapy can adversely affect oHSV immunovirotherapy. As TMZ is the standard of care for GBM, the timing of these combined therapies should be taken into consideration when planning oHSV clinical trials with chemotherapy for GBM.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marc Garcia-Moure ◽  
Naiara Martinez-Velez ◽  
Marisol Gonzalez-Huarriz ◽  
Lucía Marrodán ◽  
Manel Cascallo ◽  
...  

Abstract Last advances in the treatment of pediatric tumors has led to an increase of survival rates of children affected by primitive neuroectodermal tumors, however, still a significant amount of the patients do not overcome the disease. In addition, the survivors might suffer from severe side effects caused by the current standard treatments. Oncolytic virotherapy has emerged in the last years as a promising alternative for the treatment of solid tumors. In this work, we study the anti-tumor effect mediated by the oncolytic adenovirus VCN-01 in CNS-PNET models. VCN-01 is able to infect and replicate in PNET cell cultures, leading to a cytotoxicity and immunogenic cell death. In vivo, VCN-01 increased significantly the median survival of mice and led to long-term survivors in two orthotopic models of PNETs. In summary, these results underscore the therapeutic effect of VCN-01 for rare pediatric cancers such as PNETs, and warrants further exploration on the use of this virus to treat them.


Sign in / Sign up

Export Citation Format

Share Document