allyl mercaptan
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 2)

Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 363
Author(s):  
Semra Akgönüllü ◽  
Handan Yavuz ◽  
Adil Denizli

Aflatoxins are a group of extremely toxic and carcinogenic substances generated by the mold of the genus Aspergillus that contaminate agricultural products. When dairy cows ingest aflatoxin B1 (AFB1)−contaminated feeds, it is metabolized and transformed in the liver into a carcinogenic major form of aflatoxin M1 (AFM1), which is eliminated through the milk. The detection of AFM1 in milk is very important to be able to guarantee food safety and quality. In recent years, sensors have emerged as a quick, low–cost, and reliable platform for the detection of aflatoxins. Plasmonic sensors with molecularly imprinted polymers (MIPs) can be interesting alternatives for the determination of AFM1. In this work, we designed a molecularly–imprinted–based plasmonic sensor to directly detect lower amounts of AFM1 in raw milk samples. For this purpose, we prepared gold–nanoparticle–(AuNP)−integrated polymer nanofilm on a gold plasmonic sensor chip coated with allyl mercaptan. N−methacryloyl−l−phenylalanine (MAPA) was chosen as a functional monomer. The MIP nanofilm was prepared using the light–initiated polymerization of MAPA and ethylene glycol dimethacrylate in the presence of AFM1 as a template molecule. The developed method enabled the detection of AFM1 with a detection limit of 0.4 pg/mL and demonstrated good linearity (0.0003 ng/mL–20.0 ng/mL) under optimized experimental conditions. The AFM1 determination was performed in random dairy farmer milk samples. Using the analogous mycotoxins, it was also demonstrated that the plasmonic sensor platforms were specific to the detection of AFM1.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1874
Author(s):  
Yuri Yoshioka ◽  
Shinichi Matsumura ◽  
Masanori Morimoto

The deodorant activity of black cumin (Nigella sativa L.) seed, a spice used to flavor curry and vegetable foods in Southwest Asia, against garlic (Allium sativum L.) organosulfur compounds related to human malodor was evaluated. Black cumin seed essential oil showed remarkable deodorant activity against garlic essential oil. The mode of action of this deodorant activity was presumed to be that black cumin seed essential oil covalently reacted with the organosulfur compounds in garlic. Therefore, thymoquinone, which is a major constituent in black cumin seed essential oil, and allyl mercaptan, which is one of the organosulfur compounds produced by cutting garlic, were reacted in vitro, and the products were purified and elucidated using spectroscopic data. As a result, these substances were identified as different allyl mercaptan adducts to dihydrothymoquinone. This chemical reaction was presumed to play a key role in the deodorant activity of black cumin seed essential oil.


Author(s):  
Abdur Rauf ◽  
Tareq Abu-Izneid ◽  
Muthu Thiruvengadam ◽  
Muhammad Imran ◽  
Ahmed Olatunde ◽  
...  

: The current review discuss the chemistry, nutritional composition, toxicity, and biological functions of garlic and its bioactive compounds against various types of cancers via different anticancer mechanisms. Several scientific documents were found in reliable literature and searched in databases viz Science Direct, PubMed, Web of Science, Scopus and Research Gate were carried out using keywords such as “garlic”, “garlic bioactive compounds”, “anticancer mechanisms of garlic”, “nutritional composition of garlic”, and others. Garlic contains several phytoconstituents with activities against cancer, and these compounds such as diallyl trisulfide (DATS), allicin, and diallyl disulfide (DADS), diallyl sulfide (DAS), and allyl mercaptan (AM). The influence of numerous garlic-derived products, phytochemicals, and nanoformulations on the liver, oral, prostate, breast, gastric, colorectal, skin, and pancreatic cancers has been studied. Based on our search, the bioactive molecules in garlic were found to inhibit the various phases of cancer. Moreover, the compounds in this plant also abrogate the peroxidation of lipids, activity of nitric oxide synthase, epidermal growth factor (EGF) receptor, nuclear factor-kappa B (NF-κB), protein kinase C, and regulate cell cycle and survival signaling cascades. Hence, garlic and its bioactive molecules exhibit the aforementioned mechanistic actions and thus, they could be used to inhibit the induction, development and progression of cancer. The review describes the nutritional Composition of garlic, its bioactive molecules, and nanoformulations against various types of cancers, as well as the potential for developing these agents as antitumor drugs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weixian Xi ◽  
Vishal Hegde ◽  
Stephen D. Zoller ◽  
Howard Y. Park ◽  
Christopher M. Hart ◽  
...  

AbstractImplant related infections are the most common cause of joint arthroplasty failure, requiring revision surgeries and a new implant, resulting in a cost of $8.6 billion annually. To address this problem, we created a class of coating technology that is applied in the operating room, in a procedure that takes less than 10 min, and can incorporate any desired antibiotic. Our coating technology uses an in situ coupling reaction of branched poly(ethylene glycol) and poly(allyl mercaptan) (PEG-PAM) polymers to generate an amphiphilic polymeric coating. We show in vivo efficacy in preventing implant infection in both post-arthroplasty infection and post-spinal surgery infection mouse models. Our technology displays efficacy with or without systemic antibiotics, the standard of care. Our coating technology is applied in a clinically relevant time frame, does not require modification of implant manufacturing process, and does not change the implant shelf life.


2020 ◽  
Vol 295 (32) ◽  
pp. 11042-11055 ◽  
Author(s):  
Hannah Valentino ◽  
Ashley C. Campbell ◽  
Jonathan P. Schuermann ◽  
Nazneen Sultana ◽  
Han G. Nam ◽  
...  

Allicin is a component of the characteristic smell and flavor of garlic (Allium sativum). A flavin-containing monooxygenase (FMO) produced by A. sativum (AsFMO) was previously proposed to oxidize S-allyl-l-cysteine (SAC) to alliin, an allicin precursor. Here, we present a kinetic and structural characterization of AsFMO that suggests a possible contradiction to this proposal. Results of steady-state kinetic analyses revealed that AsFMO exhibited negligible activity with SAC; however, the enzyme was highly active with l-cysteine, N-acetyl-l-cysteine, and allyl mercaptan. We found that allyl mercaptan with NADPH was the preferred substrate-cofactor combination. Rapid-reaction kinetic analyses showed that NADPH binds tightly (KD of ∼2 μm) to AsFMO and that the hydride transfer occurs with pro-R stereospecificity. We detected the formation of a long-wavelength band when AsFMO was reduced by NADPH, probably representing the formation of a charge-transfer complex. In the absence of substrate, the reduced enzyme, in complex with NADP+, reacted with oxygen and formed an intermediate with a spectrum characteristic of C4a-hydroperoxyflavin, which decays several orders of magnitude more slowly than the kcat. The presence of substrate enhanced C4a-hydroperoxyflavin formation and, upon hydroxylation, oxidation occurred with a rate constant similar to the kcat. The structure of AsFMO complexed with FAD at 2.08-Å resolution features two domains for binding of FAD and NADPH, representative of class B flavin monooxygenases. These biochemical and structural results are consistent with AsFMO being an S-monooxygenase involved in allicin biosynthesis through direct formation of sulfenic acid and not SAC oxidation.


Heliyon ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. e03517 ◽  
Author(s):  
Sugandha Singhal ◽  
Mallika Pathak ◽  
Paban K. Agrawala ◽  
Himanshu Ojha

2020 ◽  
Vol 11 (12) ◽  
pp. 10913-10924
Author(s):  
Yu Mi Jo ◽  
Hee Seo ◽  
Ga Yun Kim ◽  
Seong Won Cheon ◽  
Seul-Ah Kim ◽  
...  

Lactobacillus pentosus SMB718 has the properties of being a beneficial probiotic for human health and is a desirable starter for better flavor in fermented allium species plants.


2019 ◽  
Vol 20 (9) ◽  
pp. 2299 ◽  
Author(s):  
Saba Nojoumi ◽  
Ying Ma ◽  
Sergej Schwagerus ◽  
Christian P. R. Hackenberger ◽  
Nediljko Budisa

In this study, we report our initial results on in situ biosynthesis of S-allyl-l-homocysteine (Sahc) by simple metabolic conversion of allyl mercaptan in Escherichia coli, which served as the host organism endowed with a direct sulfhydration pathway. The intracellular synthesis we describe in this study is coupled with the direct incorporation of Sahc into proteins in response to methionine codons. Together with O-acetyl-homoserine, allyl mercaptan was added to the growth medium, followed by uptake and intracellular reaction to give Sahc. Our protocol efficiently combined the in vivo synthesis of Sahc via metabolic engineering with reprogrammed translation, without the need for a major change in the protein biosynthesis machinery. Although the system needs further optimisation to achieve greater intracellular Sahc production for complete protein labelling, we demonstrated its functional versatility for photo-induced thiol-ene coupling and the recently developed phosphonamidate conjugation reaction. Importantly, deprotection of Sahc leads to homocysteine-containing proteins—a potentially useful approach for the selective labelling of thiols with high relevance in various medical settings.


Sign in / Sign up

Export Citation Format

Share Document