scholarly journals Chemoproteomics Maps Glycolytic Targetome in Cancer Cells

2020 ◽  
Author(s):  
Yang Tian ◽  
Ning Wan ◽  
Ming Ding ◽  
Chang Shao ◽  
Nian Wang ◽  
...  

ABSTRACTHyperactivated glycolysis, favoring uncontrolled growth and metastasis by producing essential metabolic intermediates engaging bioenergetics and biosynthesis, is a metabolic hallmark of most cancer cells. Although sporadic information has revealed glycolytic metabolites also possess non-metabolic function as signaling molecules, it remains largely elusive how these metabolites interact with and functionally regulate their binding targets. Here we introduce a Target Responsive Accessibility Profiling (TRAP) approach that measures ligand binding-induced steric hindrance in protein targets via global profiling accessibility changes in reactive lysines, and mapped 913 target candidates and 2,487 interactions for 10 major glycolytic metabolites in cancer cells via TRAP. The elucidated targetome uncovers diverse regulatory modalities of glycolytic metabolites involving the direct perturbation of carbohydrate metabolism enzymes, intervention of transcriptional control, modulation of proteome-level acetylation and protein complex assemblies. The advantages gained from glycolysis by cancer cells are expanded by discovering lactate as a ligand for an orphan transcriptional regulator TRIM 28 that promotes p53 degradation, and by identifying pyruvate acting against a cell apoptosis inducer trichostatin A via attenuating protein acetylation. Lastly, the inhibition of glycolytic key enzymes led to identify an intrinsically active glycolytic intermediate glyceraldehyde 3-phosphate that elicits its cytotoxicity by engaging with ENO1 and MTHFD1. Collectively, the glycolytic targetome depicted by TRAP constitutes a fertile resource for understanding how glycolysis finely tunes metabolism and signaling in support of cancer cells, and fostering the exploitation of glycolytic targetome as promising nodes for anti-cancer therapeutics development.

2021 ◽  
Author(s):  
Haiping Hao ◽  
Yang Tian ◽  
Ning Wan ◽  
Ming Ding ◽  
Chang Shao ◽  
...  

Abstract Hyperactivated glycolysis, favoring uncontrolled growth and metastasis by producing essential metabolic intermediates engaging bioenergetics and biosynthesis, is a metabolic hallmark of most cancer cells. Although sporadic information has revealed glycolytic metabolites also possess non-metabolic function as signaling molecules, it remains largely elusive how these metabolites interact with and functionally regulate their binding targets. Here we introduce a Target Responsive Accessibility Profiling (TRAP) approach that measures ligand binding-induced steric hindrance in protein targets via global profiling accessibility changes in reactive lysines, and mapped 913 target candidates and 2,487 interactions for 10 major glycolytic metabolites in cancer cells via TRAP. The elucidated targetome uncovers diverse regulatory modalities of glycolytic metabolites involving the direct perturbation of carbohydrate metabolism enzymes, intervention of transcriptional control, modulation of proteome-level acetylation and protein complex assemblies. The advantages gained from glycolysis by cancer cells are expanded by discovering lactate as a ligand for an orphan transcriptional regulator TRIM 28 that promotes p53 degradation, and by identifying pyruvate acting against a cell apoptosis inducer trichostatin A via attenuating protein acetylation. Lastly, the inhibition of glycolytic key enzymes led to identify an intrinsically active glycolytic intermediate glyceraldehyde 3-phosphate that elicits its cytotoxicity by engaging with ENO1 and MTHFD1. Collectively, the glycolytic targetome depicted by TRAP constitutes a fertile resource for understanding how glycolysis finely tunes metabolism and signaling in support of cancer cells, and fostering the exploitation of glycolytic targetome as promising nodes for anti-cancer therapeutics development.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
DB Divlianska ◽  
AE Wright ◽  
S Francis ◽  
MA Walters ◽  
CE Salomon ◽  
...  

Author(s):  
Rocco J. Rotello ◽  
Timothy D. Veenstra

: In the current omics-age of research, major developments have been made in technologies that attempt to survey the entire repertoire of genes, transcripts, proteins, and metabolites present within a cell. While genomics has led to a dramatic increase in our understanding of such things as disease morphology and how organisms respond to medications, it is critical to obtain information at the proteome level since proteins carry out most of the functions within the cell. The primary tool for obtaining proteome-wide information on proteins within the cell is mass spectrometry (MS). While it has historically been associated with the protein identification, developments over the past couple of decades have made MS a robust technology for protein quantitation as well. Identifying quantitative changes in proteomes is complicated by its dynamic nature and the inability of any technique to guarantee complete coverage of every protein within a proteome sample. Fortunately, the combined development of sample preparation and MS methods have made it capable to quantitatively compare many thousands of proteins obtained from cells and organisms.


2019 ◽  
Vol 15 (2) ◽  
pp. 138-149
Author(s):  
Saleem Farooq ◽  
Javid A. Banday ◽  
Aashiq Hussain ◽  
Momina Nazir ◽  
Mushtaq A. Qurishi ◽  
...  

Background: Natural product, osthol has been found to have important biological and pharmacological roles particularly having inhibitory effect on multiple types of cancer. Objective: The unmet needs in cancer therapeutics make its derivatization an important and exciting field of research. Keeping this in view, a whole new series of diverse analogues of osthol (1) were synthesized. Method: All the newly synthesized compounds were made through modification in the lactone ring as well as in the side chain of the osthol molecule and were subjected to anti-proliferative screening through 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) against four different human cancers of diverse origins viz. Colon (Colo-205), lung (A549), Leukemia (THP- 1) and breast (MCF-7) including SV40 transformed normal breast epithelial cell (fR-2). Results: Interestingly, among the tested molecules, most of the analogs displayed better antiproliferative activity than the parent Osthol 1. However, among all the tested analogs, compound 28 exhibited the best results against leukemia (THP1) cell line with IC50 of 5µM.Compound 28 induced potent apoptotic effects and G1 phase arrest in leukemia cancer cells (THP1). The population of apoptotic cells increased from 13.8% in negative control to 26.9% at 8μM concentration of 28. Compound 28 also induced a remarkable decrease in mitochondrial membrane potential (ΛΨm) leading to apoptosis of the cancer cells. Conclusion: A novel series of molecules derived from natural product osthol were synthesized, wherein compound 28 was found to be most effective against leukemia and with 10 fold less toxicity against normal cells. The compound induced cancer inhibition mainly through apoptosis and thus has a potential in cancer therapeutics.


2020 ◽  
Vol 20 (17) ◽  
pp. 2125-2135
Author(s):  
Ci Ren ◽  
Chun Gao ◽  
Xiaomin Li ◽  
Jinfeng Xiong ◽  
Hui Shen ◽  
...  

Background: Persistent infection with the high-risk of human papillomavirus (HR-HPVs) is the primary etiological factor of cervical cancer; HR-HPVs express oncoproteins E6 and E7, both of which play key roles in the progression of cervical carcinogenesis. Zinc Finger Nucleases (ZFNs) targeting HPV E7 induce specific shear of the E7 gene, weakening the malignant biological effects, hence showing great potential for clinical transformation. Objective: Our aim was to develop a new comprehensive therapy for better clinical application of ZFNs. We here explored the anti-cancer efficiency of HPV targeted ZFNs combined with a platinum-based antineoplastic drug Cisplatin (DDP) and an HDAC inhibitor Trichostatin A (TSA). Methods: SiHa and HeLa cells were exposed to different concentrations of DDP and TSA; the appropriate concentrations for the following experiments were screened according to cell apoptosis. Then cells were grouped for combined or separate treatments; apoptosis, cell viability and proliferation ability were measured by flow cytometry detection, CCK-8 assays and colony formation assays. The xenograft experiments were also performed to determine the anti-cancer effects of the combined therapy. In addition, the HPV E7 and RB1 expressions were measured by western blot analysis. Results: Results showed that the combined therapy induced about two times more apoptosis than that of ZFNs alone in SiHa and HeLa cells, and much more inhibition of cell viability than either of the separate treatment. The colony formation ability was inhibited more than 80% by the co-treatment, the protein expression of HPV16/18E7 was down regulated and that of RB1 was elevated. In addition, the xenografts experiment showed a synergistic effect between DDP and TSA together with ZFNs. Conclusion: Our results demonstrated that ZFNs combined with DDP or TSA functioned effectively in cervical cancer cells, and it provided novel ideas for the prevention and treatment of HPV-related cervical malignancies.


2021 ◽  
Vol 22 (16) ◽  
pp. 8372
Author(s):  
Ana María Zárate ◽  
Christian Espinosa-Bustos ◽  
Simón Guerrero ◽  
Angélica Fierro ◽  
Felipe Oyarzún-Ampuero ◽  
...  

The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hai Trieu Ly ◽  
Trieu Minh Truong ◽  
Thi Thu Huong Nguyen ◽  
Hoang Dung Nguyen ◽  
Yuxia Zhao ◽  
...  

Abstract Background Cancer is one of the most considerable concerns because of increasing the death rate all over the world. Recent studies have disclosed that plant extracts exhibit anticancer activity through various mechanisms. Xanthium strumarium has been used by Vietnamese in herbal medicines to support the medication of infirmities. This study is to consider the secondary metabolites, antioxidant and anticancer capacities of extract from the aerial parts (stems and leaves) of X. strumarium (AP-XS). Methods AP-XS was analyzed for the presence of phytochemicals via qualitative chemical tests and determined total polyphenol and flavonoid contents. DPPH (1,1-diphenyl-2-picrylhydrazyl) quenching assay and sulforhodamine B (SRB) assay were selected to investigate antioxidant capacity and anti-proliferative activity, respectively. Besides, acridine orange-ethidium bromide (AO-EB) dual staining was applied to evaluate the ability to induce apoptosis on HepG2 cancer cells. Results Results of present study indicated that AP-XS contains the main phytochemicals such as flavonoids, tannins, saponins, alkaloids, and triterpenes. Ethanol extract had highest content of polyphenol (84.86 mg gallic acid equivalent/g dry mass), and exhibited the great total antioxidant property (IC50 = 184.13 μg/mL) and anti-proliferative activity on HepG2 cancer cells (IC50 = 81.69 μg/mL). Furthermore, the characteristics of apoptosis including shrinkage of the cell and apoptotic bodies were found following 60 h of AP-XS extract treatment through AO-EB dual staining. Conclusion The data suggest that AP-XS extract had antioxidant potential and anti-proliferative effect. The anti-proliferative property was considered to have an association with a rising of apoptosis. These results were reliable for further research on X. strumarium as a source of phytochemicals with anticancer activity potential for cancer therapeutics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marina Stasenko ◽  
Evan Smith ◽  
Oladapo Yeku ◽  
Kay J. Park ◽  
Ian Laster ◽  
...  

AbstractThe lectin, galectin-3 (Gal3), has been implicated in a variety of inflammatory and oncogenic processes, including tumor growth, invasion, and metastasis. The interactions of Gal3 and MUC16 represent a potential targetable pathway for the treatment of MUC16-expressing malignancies. We found that the silencing of Gal3 in MUC16-expressing breast and ovarian cancer cells in vitro inhibited tumor cell invasion and led to attenuated tumor growth in murine models. We therefore developed an inhibitory murine monoclonal anti–Gal3 carbohydrate-binding domain antibody, 14D11, which bound human and mouse Gal3 but did not bind human Galectins-1, -7, -8 or -9. Competition studies and a docking model suggest that the 14D11 antibody competes with lactose for the carbohydrate binding pocket of Gal3. In MUC16-expressing cancer cells, 14D11 treatment blocked AKT and ERK1/2 phosphorylation, and led to inhibition of cancer cell Matrigel invasion. Finally, in experimental animal tumor models, 14D11 treatment led to prolongation of overall survival in animals bearing flank tumors, and retarded lung specific metastatic growth by MUC16 expressing breast cancer cells. Our results provide evidence that antibody based Gal3 blockade may be a viable therapeutic strategy in patients with MUC16-expressing tumors, supporting further development of human blocking antibodies against Gal3 as potential cancer therapeutics.


Sign in / Sign up

Export Citation Format

Share Document