scholarly journals Lower blood lactate and higher circulating natural killer cells at admission predict spontaneous survival in non-acetaminophen induced acute Liver failure

Author(s):  
Tanvi Agrawal ◽  
Rakhi Maiwall ◽  
Rajan V ◽  
Meenu Bajpai ◽  
Rakesh Kumar Jagdish ◽  
...  

AbstractBackground and AimsMassive cellular necrosis in ALF is dominantly immune mediated and innate immune cells are major pathophysiological determinants in liver damage. Our aim was to investigate specific innate immune cells or damage associated molecular patterns (DAMPs) relating to the final outcome of patient.MethodsIn fifty ALF patients and in fifteen age-matched healthy controls (HC), DAMPs were measured in plasma using ELISA. Phenotypic analysis of neutrophils, monocytes, natural killer (NK) and NKT cells was done by flow-cytometry and correlated with clinical and biochemical parameters.ResultsALF patients (aged 27±9 yr, 56% males, 78% viral etiology) had MELD of 31.5±8, jaundice to hepatic encephalopathy (HE) of 4.6±3.2 days, HE grade III-IV, 82% with cerebral edema, 38% met KCH criteria, 56% had suspected sepsis. Percentage of intermediate monocytes (CD14+CD16+) was increased (p<0.01) and non-classical monocytes (CD14-CD16+) was decreased in ALF compared to HC. CD16+CD56+ NK cells in total lymphocytes was significantly lower in ALF patients compared to HC, but was higher in survivors {9.28% (0.5-20.3)} than non-survivors {5.1% (0.2-10.6)} (p<0.001). Higher percentage of circulating NK cells (>6.7%) at admission was a good predictor of survival. Non-survivors had higher levels of serum lactate (6.1 vs. 28, Odds ratio 2.23, CI 1.27-3.94) and granzymeB positive NK cells than survivors. Logistic regression model predicted the combination of lactate levels with NK cell percentage at admission for survival (AUROC of 0.94; sensitivity 95.8%, specificity of 78.5%).ConclusionCombination of NK cell frequency and lactate levels at admission can reliably predict survival of ALF patients.KEY POINTSALF is generally immune mediated and predominantly caused by viral infections or acetaminophen toxicity.Therapeutic options are limited in ALF, important to know key immune players for their survival.CD16+CD56+ NK cells were found to be higher in survivors than non survivors.Combination of lactate levels with NK cell percentage at the time of admission can reliably predict the survival of ALF patients.

2020 ◽  
Vol 99 (1) ◽  
pp. 147-158
Author(s):  
L. Dold ◽  
L. Zimmer ◽  
C. Schwarze-Zander ◽  
C. Boesecke ◽  
R. Mohr ◽  
...  

Abstract HLA-B*57 affects the course of HIV infection. Under antiretroviral therapy, its effects cannot be explained by outstandingly efficient T cell responses alone but may also involve cells of innate immunity. Studying in vitro stimulation with Pam3CSK4, E. coli LPS-B5 and CpG-ODN-2216, we observed greater induction of IL-6/IL-1beta double-positive CD14+CD16++ monocytes as well as IFN-gamma-positive cytotoxic CD56highCD16neg NK cells in HLA-B*57- versus HLA-B*44-positive HIV patients, while TNF-alpha induction remained unchanged. Differences were not seen in the other monocyte and NK cell subsets or in HLA-matched healthy controls. Our findings show that, in virally suppressed HIV infection, HLA-B*57 is associated with enhanced responsiveness of inflammatory innate immune cells to TLR ligands, possibly contributing to increased vulnerability in sepsis. Key messages • HLA-B*57 is a host factor affecting clinical outcomes of HIV infection. • HLA-B*57 modifies inflammatory subsets of NK cells and monocytes in HIV infection. • In HLA-B*57-positive HIV patients TLR agonists induce enhanced IL-6/IL-1beta in monocytes. • NK cells from HLA-B*57 HIV patients release more IFN-gamma upon TLR costimulation. • HLA-B*57 is linked to enhanced inflammatory responsiveness to TLR ligands.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1424-1424
Author(s):  
François-René Bertin ◽  
Sandrine Laurance ◽  
Catherine Lemarie ◽  
Mark Blostein

Abstract Thrombosis is considered to be a pathological deviation of physiologic hemostasis involving similar mechanisms. Interestingly, recent work demonstrates that innate immune cells promote venous thrombosis. Innate immune cells were shown to collaborate to induce the activation of the coagulation cascade and platelets. In particular, neutrophils contribute to venous thrombosis through the release of neutrophil extracellular traps (NETs). However, the mechanism triggering the formation of NETs during venous thrombosis remain unknown. Of interest, a study showed that IFNγ induced the formation of NETs. Thus, we investigated the role of IFNγ-producing cells in the development of thrombosis. We used mice lacking IFNγ, Tbet (the transcription factor regulating the expression of IFNγ) or wild type mice. Venous thrombosis was induced using the flow restriction model in the inferior vena cava , as has been previously published. In Tbet-/-, IFNγ-/- and WT mice, we show that the absence of Tbet or IFNγ decreases the formation of thrombi after venous thrombosis induction, suggesting that the Tbet+/IFNγ producing cells are required for the early development of venous thrombosis. Comparing the composition of the thrombi from Tbet-/-, IFNγ-/- and WT mice, we show that, in all mice, neutrophils are the main cellular component of thrombi followed by monocytes; however, the number of neutrophil extracellular traps (NETs) formed during thrombosis is significantly lower in Tbet-/- and IFNγ-/- mice. Furthermore, NET formation is also decreased in WT mice specifically depleted of IFNγ and increases in Tbet-/- and IFNγ-/- mice injected with recombinant IFNγ. In vitro, we show that stimulation of WT murine neutrophils with recombinant IFNγ triggers the formation of NETs demonstrating that Tbet and IFNγ are crucial for NET formation by neutrophils. Natural killer (NK) cells are the main producers of IFNγ . Thus, we investigated the role of NK cells in venous thrombosis induced by flow restriction. NK cells were specifically depleted with an antibody during the development of venous thrombosis. The absence of NK cells results in smaller thrombi suggesting that NK cells are required for early thrombus development. Additionally, depletion in NK cells results in decreased in-situ IFNγ production and decreased NET formation. To directly link NK cells to the formation of NETs, WT neutrophils were co-cultured with Tbet-/- and IFNγ-/- NK cells. We show that WT neutrophils release less NETs when cultured with Tbet-/- and IFNγ-/- NK cells as compared to WT NK cells. These data suggest that NK cells trigger the formation of NETs by neutrophils through the production of IFNγ. Hence, we demonstrate that, in a partial flow restriction model of venous thrombosis, Tbet and IFNγ are crucial for thrombus development by promoting the formation of NETs by neutrophils and that NK cells are key effector cells in this process. Disclosures Blostein: boehringer-ingelheim: Research Funding.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Ji-Yoon Noh ◽  
Suk Ran Yoon ◽  
Tae-Don Kim ◽  
Inpyo Choi ◽  
Haiyoung Jung

Innate immunity represents the first barrier for host defense against microbial infection. Toll-like receptors (TLRs) are the most well-defined PRRs with respect to PAMP recognition and induction of innate immune responses. They recognize pathogen-associated molecular patterns (PAMPs) and trigger innate immune responses by inducing inflammatory cytokines, chemokines, antigen-presenting molecules, and costimulatory molecules. TLRs are expressed either on the cell surface or within endosomes of innate immune cells. NK cells are one of the innate immune cells and also express TLRs to recognize or respond to PAMPs. TLRs in NK cells induce the innate immune responses against bacterial and viral infections via inducing NK cytotoxicity and cytokine production. In this review, we will discuss the expression and cellular function of TLRs in NK cells and also introduce some therapeutic applications of TLR agonists for NK cell-mediated immunotherapy.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 263
Author(s):  
Philip Rosenstock ◽  
Thomas Kaufmann

Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A578-A578
Author(s):  
Andreia Maia ◽  
Joana Lerias ◽  
Markus Maeurer ◽  
Mireia Castillo-Martin

BackgroundAdoptive immunotherapy relies on the use of T-cells to target tumour cells, through Major Histocompatibility Complex (MHC) Class I recognition(1). However, many tumours display alterations in the MHC-I pathway, a well-described immune evasion mechanism(2). Natural Killer (NK) cells recognize transformed cells independently from the presence of MHC-I and may be a reliable therapeutic option for patients with altered tumour MHC-I expression. The source of NK cells may be autologous or allogeneic and NK cells are also clinically relevant recipients of transgenic receptors (TCRs or antibodies) targeting tumour cells. NK cells have been categorized according to their CD56 and CD16 surface expression into different subpopulations: cytotoxic (CD56+CD16+) and regulatory (CD56brightCD16-)(3). Expanding cytotoxic NK cells is challenging, since the frequency of NK cells is low in peripheral blood(4) and there is also – at this point – not an optimal expansion protocol available.The goal of this project is to determine the best cytokine combination that facilitates expansion of cytotoxic NK cells that either target tumor cells directly or serve as recipients for transgenic receptors.MethodsPeripheral Blood Mononuclear Cells (PBMCs) were extracted using Ficoll methodology from blood donors and cultured in T25 flasks with Cell Genix Medium supplemented with 10% human serum and antibiotics. NK cells were expanded supplemented with feeder cells (ratio 1:1) and different cytokine combinations (1000 U/mL of IL-2, 10 U/ml of IL-12, 180 U/mL of IL-15 and/or 1 U/mL of IL-21) during 20 days. The immunophenotype of expanded NK cells was analyzed at days 0, 5, 10, 15 and 20 by flow cytometry. The cytotoxicity of NK cells was measured by a CD107a Assay or by a Total Cytotoxicity and Apoptosis Assay at days 10 and 20. Thirteen different cytokine combinations were tested.Results4/13 cytokine combinations produced a statistically significant increase of the absolute number of NK cells with a higher percentage of cytotoxic NK cells (figure 1). However, induction of cytotoxicity was not associated with a strong NK cell expansion. The regulatory NK cells subset (CD56brightCD16-) showed the highest percentage of CD107a-expressing cells, more than the CD56+CD16+, the most cytotoxic subpopulation of NK cells.Abstract 542 Figure 1Representative percentage of NK cells in total lymphocytes (A), CD56+CD16+ subpopulation in total NK cells (B), and CD56brightCD16- subpopulation amongst total NK cells (C) at different time points (5, 10, 15 and 20 days) expanded from PBMCs* p-value < 0.05ConclusionsThis work shows that we are able to grow and efficiently expand NK cells from PBMCs with different cytokine combinations leading to clinically relevant NK cell numbers as well as cytotoxic functions. This enables to produce NK cell products for therapy and as recipients for transgenic tumor antigen-specific receptors.AcknowledgementsThe authors would like to thank the Champalimaud Foundation Biobank, the Vivarium Facility and the Flow Cytometry Platform of the Champalimaud Centre for the Unknown.Ethics ApprovalThis study was approved by the Champalimaud Foundation Ethics Committee and by the Ethics Research Committee of NOVA Medical School of NOVA University of Lisbon.ConsentWritten informed consent was obtained from the blood donors to use their samples for research purposes.ReferencesRosenberg SA, Restifo NP, Yang JC, Morgan RA, Mark E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008;8(4):299–308.Aptsiauri N, Ruiz-Cabello F, Garrido F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr Opin Immunol 2018;51:123–32.Di Vito C, Mikulak J, Mavilio D. On the way to become a natural killer cell. Front Immunol. 2019;10(August):1–15.Zotto G Del, Antonini F, Pesce S, Moretta F, Moretta L. Comprehensive phenotyping of human PB NK Cells by Flow Cytometry. 2020;1–9.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hee Young Na ◽  
Yujun Park ◽  
Soo Kyung Nam ◽  
Jiwon Koh ◽  
Yoonjin Kwak ◽  
...  

Abstract Background Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). Methods We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. Results Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. Conclusions Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.


Blood ◽  
2001 ◽  
Vol 97 (10) ◽  
pp. 3146-3151 ◽  
Author(s):  
Megan A. Cooper ◽  
Todd A. Fehniger ◽  
Sarah C. Turner ◽  
Kenneth S. Chen ◽  
Bobak A. Ghaheri ◽  
...  

Abstract During the innate immune response to infection, monocyte-derived cytokines (monokines), stimulate natural killer (NK) cells to produce immunoregulatory cytokines that are important to the host's early defense. Human NK cell subsets can be distinguished by CD56 surface density expression (ie, CD56bright and CD56dim). In this report, it is shown that CD56bright NK cells produce significantly greater levels of interferon-γ, tumor necrosis factor-β, granulocyte macrophage–colony-stimulating factor, IL-10, and IL-13 protein in response to monokine stimulation than do CD56dim NK cells, which produce negligible amounts of these cytokines. Further, qualitative differences in CD56bright NK-derived cytokines are shown to be dependent on the specific monokines present. For example, the monokine IL-15 appears to be required for type 2 cytokine production by CD56bright NK cells. It is proposed that human CD56bright NK cells have a unique functional role in the innate immune response as the primary source of NK cell–derived immunoregulatory cytokines, regulated in part by differential monokine production.


2020 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Yann Sellier ◽  
Florence Marliot ◽  
Bettina Bessières ◽  
Julien Stirnemann ◽  
Ferechte Encha-Razavi ◽  
...  

Background: The understanding of the pathogenesis of cytomegalovirus (CMV)-induced fetal brain lesions is limited. We aimed to quantify adaptive and innate immune cells and CMV-infected cells in fetal brains with various degrees of brain damage. Methods: In total, 26 archived embedded fetal brains were studied, of which 21 were CMV-infected and classified in severely affected (n = 13) and moderately affected (n = 8), and 5 were uninfected controls. The respective magnitude of infected cells, immune cells (CD8+, B cells, plasma cells, NK cells, and macrophages), and expression of immune checkpoint receptors (PD-1/PD-L1 and LAG-3) were measured by immunochemistry and quantified by quantitative imaging analysis. Results: Quantities of CD8+, plasma cells, NK cells, macrophages, and HCMV+ cells and expression of PD-1/PD-L1 and LAG-3 were significantly higher in severely affected than in moderately affected brains (all p values < 0.05). A strong link between higher number of stained cells for HCMV/CD8 and PD-1 and severity of brain lesions was found by component analysis. Conclusions: The higher expression of CD8, PD-1, and LAG-3 in severely affected brains could reflect immune exhaustion of cerebral T cells. These exhausted T cells could be ineffective in controlling viral multiplication itself, leading to more severe brain lesions. The study of the functionality of brain leucocytes ex vivo is needed to confirm this hypothesis.


2016 ◽  
Vol 90 (14) ◽  
pp. 6464-6474 ◽  
Author(s):  
Laura Notario ◽  
Elisenda Alari-Pahissa ◽  
Antonio de Molina ◽  
Pilar Lauzurica

ABSTRACTDuring the host response to viral infection, the transmembrane CD69 protein is highly upregulated in all immune cells. We have studied the role of CD69 in the murine immune response to vaccinia virus (VACV) infection, and we report that the absence of CD69 enhances protection against VACV at both short and long times postinfection in immunocompetent and immunodeficient mice. Natural killer (NK) cells were implicated in the increased infection control, since the differences were greatly diminished when NK cells were depleted. This role of NK cells was not based on an altered NK cell reactivity, since CD69 did not affect the NK cell activation threshold in response to major histocompatibility complex class I NK cell targets or protein kinase C activation. Instead, NK cell numbers were increased in the spleen and peritoneum of CD69-deficient infected mice. That was not just secondary to better infection control in CD69-deficient mice, since NK cell numbers in the spleens and the blood of uninfected CD69−/−mice were already augmented. CD69-deficient NK cells from infected mice did not have an altered proliferation capacity. However, a lower spontaneous cell death rate was observed for CD69−/−lymphocytes. Thus, our results suggest that CD69 limits the innate immune response to VACV infection at least in part through cell homeostatic survival.IMPORTANCEWe show that increased natural killer (NK) cell numbers augment the host response and survival after infection with vaccinia virus. This phenotype is found in the absence of CD69 in immunocompetent and immunodeficient hosts. As part of the innate immune system, NK lymphocytes are activated and participate in the defense against infection. Several studies have focused on the contribution of NK cells to protection against infection with vaccinia virus. In this study, it was demonstrated that the augmented early NK cell response in the absence of CD69 is responsible for the increased protection seen during infection with vaccinia virus even at late times of infection. This work indicates that the CD69 molecule may be a target of therapy to augment the response to poxvirus infection.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sung Won Lee ◽  
Hyun Jung Park ◽  
Nayoung Kim ◽  
Seokmann Hong

Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited byα-galactosylceramide (α-GC) in mice. The rapid and strong expression of interferon-γby NKDCs afterα-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated followingα-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited byα-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated byα-GC-stimulated NKT cellsin vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document