scholarly journals Efficient inhibition of SARS-CoV-2 strains by a novel ACE2-IgG4-Fc fusion protein with a stabilized hinge region

2020 ◽  
Author(s):  
Hristo L. Svilenov ◽  
Julia Sacherl ◽  
Alwin Reiter ◽  
Lisa Wolff ◽  
Cho-Chin Chen ◽  
...  

AbstractThe novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) enters its host cells after binding to the angiotensin-converting enzyme 2 (ACE2) via its spike glycoprotein. This interaction is critical for virus entry and virus-host membrane fusion. Soluble ACE2 ectodomains bind and neutralize the virus but the short in vivo half-lives of soluble ACE2 limits its therapeutic use. Fusion of the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain can prolong the in vivo half-life but bears the risk of unwanted Fc-receptor activation and antibody-dependent disease enhancement. Here, we describe optimized ACE2-Fc fusion constructs that avoid Fc-receptor binding by using IgG4-Fc as a fusion partner. The engineered ACE2-IgG4-Fc fusion proteins described herein exhibit promising pharmaceutical properties and a broad antiviral activity at single-digit nanomolar concentration. In addition, they allow to maintain the beneficial enzymatic activity of ACE2 and thus are very promising candidate antivirals broadly acting against coronaviruses.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1434
Author(s):  
Claudio Fenizia ◽  
Silvia Galbiati ◽  
Claudia Vanetti ◽  
Riccardo Vago ◽  
Mario Clerici ◽  
...  

In late 2019, the betacoronavirus SARS-CoV-2 was identified as the viral agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. Coronaviruses Spike proteins are responsible for their ability to interact with host membrane receptors and different proteins have been identified as SARS-CoV-2 interactors, among which Angiotensin-converting enzyme 2 (ACE2), and Basigin2/EMMPRIN/CD147 (CD147). CD147 plays an important role in human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, Kaposi’s sarcoma-associated herpesvirus, and severe acute respiratory syndrome coronavirus infections. In particular, SARS-CoV recognizes the CD147 receptor expressed on the surface of host cells by its nucleocapsid protein binding to cyclophilin A (CyPA), a ligand for CD147. However, the involvement of CD147 in SARS-CoV-2 infection is still debated. Interference with both the function (blocking antibody) and the expression (knock down) of CD147 showed that this receptor partakes in SARS-CoV-2 infection and provided additional clues on the underlying mechanism: CD147 binding to CyPA does not play a role; CD147 regulates ACE2 levels and both receptors are affected by virus infection. Altogether, these findings suggest that CD147 is involved in SARS-CoV-2 tropism and represents a possible therapeutic target to challenge COVID-19.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 16-24
Author(s):  
Mohammed Oday Ezzat ◽  
Basma M. Abd Razik ◽  
Kutayba F. Dawood

The prevalence of a novel coronavirus (2019-nCoV) in the last few months represents a serious threat as a world health emergency concern. Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor for the respiratory syndrome of coronavirus epidemic in 2019 (2019-nCoV). In this work, the active site of ACE2 is successfully located by Sitmap prediction tool and validated by different marketed drugs. To design and discover new medical countermeasure drugs, we evaluate a total of 184 molecules of 7-chloro-N-methylquinolin-4-amine derivatives for binding affinity inside the crystal structure of ACE2 located active site. A novel series of N-substituted 2,5-bis[(7-chloroquinolin-4-yl)amino]pentanoic acid derivatives is generated and evaluated for a prospect as a lead compound for (2019-nCoV) medication with a docking score range of (-10.60 to -8.99) kcal/mol for the highest twenty derivatives. Moreover, the ADME pharmaceutical properties were evaluated for further proposed experimental evaluation in vitro or in vivo


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinsung Yang ◽  
Simon J. L. Petitjean ◽  
Melanie Koehler ◽  
Qingrong Zhang ◽  
Andra C. Dumitru ◽  
...  

Abstract Study of the interactions established between the viral glycoproteins and their host receptors is of critical importance for a better understanding of virus entry into cells. The novel coronavirus SARS-CoV-2 entry into host cells is mediated by its spike glycoprotein (S-glycoprotein), and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we use atomic force microscopy to investigate the mechanisms by which the S-glycoprotein binds to the ACE2 receptor. We demonstrate, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as the binding interface within the S-glycoprotein with the ACE2 receptor and extract the kinetic and thermodynamic properties of this binding pocket. Altogether, these results provide a picture of the established interaction on living cells. Finally, we test several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection.


2020 ◽  
Vol 134 (12) ◽  
pp. 1301-1304 ◽  
Author(s):  
Jameel M. Inal

Abstract The novel strain of coronavirus that appeared in 2019, SARS-CoV-2, is the causative agent of severe respiratory disease, COVID-19, and the ongoing pandemic. As for SARS-CoV that caused the SARS 2003 epidemic, the receptor on host cells that promotes uptake, through attachment of the spike (S) protein of the virus, is angiotensin-converting enzyme 2 (ACE2). In a recent article published by Batlle et al. (Clin. Sci. (Lond.) (2020) 134, 543–545) it was suggested that soluble recombinant ACE2 could be used as a novel biological therapeutic to intercept the virus, limiting the progression of infection and reducing lung injury. Another way, discussed here, to capture SARS-CoV-2, as an adjunct or alternative, would be to use ACE2+-small extracellular vesicles (sEVs). A competitive inhibition therapy could therefore be developed, using sEVs from engineered mesenchymal stromal/stem cells (MSCs), overexpressing ACE2.


2020 ◽  
Author(s):  
Saroj Kumar Panda ◽  
Parth Sarthi Sen Gupta ◽  
Satyaranjan Biswal ◽  
Abhik Kumar Ray ◽  
Malay Kumar Rana

<p>SARS-CoV-2, a novel coronavirus causing overwhelming death and infection worldwide, has emerged as a pandemic. Compared to its predecessor SARS-CoV, SARS-CoV-2 is more infective for being highly contagious and exhibiting tighter binding with host angiotensin-converting enzyme 2 (hACE-2). The entry of the virus into host cells is mediated by the interaction of its spike protein with hACE-2. Thus, a peptide that has a resemblance to hACE-2 but can overpower the spike protein-hACE-2 interaction will be a potential therapeutic to contain this virus. The non-interacting residues in the receptor-binding domain of hACE-2 have been mutated to generate a library of 136 new peptides. Out of this library, docking and virtual screening discover seven peptides that can exert a stronger interaction with the spike protein than hACE-2. A peptide derived from simultaneous mutation of all the non-interacting residues of hACE-2 yields two-fold stronger interaction than hACE-2 and thus turns out here to be the best peptide-inhibitor of the novel coronavirus. The binding of the spike protein and the best peptide-inhibitor with hACE-2 is explored further by molecular dynamics, free energy, and principal component analysis to demonstrate its efficacy. Further, the inhibition assay study with the best peptide inhibitor is in progress. </p>


2021 ◽  
Author(s):  
Margarita Rangel ◽  
Nicole McAllister ◽  
Kristen Dancel-Manning ◽  
Maria G Noval ◽  
Laurie Silva ◽  
...  

Chikungunya virus (CHIKV) is a re-emerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intra-host evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, co-occurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by anti-glycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host.


2021 ◽  
Vol 49 (9) ◽  
pp. 030006052110443
Author(s):  
İrem İnanç ◽  
Esra Erdemli

Coronavirus disease 2019 (COVID-19) following infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic that is still having serious effects worldwide. This virus, which targets the lungs in particular, can also damage other tissues. Angiotensin converting enzyme 2 (ACE-2) plays a key role in viral entry into host cells. The presence of ACE-2 in various tissues may permit viral infection. Studies of COVID-19 often make use of postmortem tissues. Although this information provides various useful results, it is also necessary to conduct in vitro studies to understand optimal treatment approaches. Because the virus may show species-specific differences, in vitro technologies using human cells are particularly important. Organoid technologies, three-dimensional structures that can be obtained from human cells, are playing increasingly important roles in studies of SARS-CoV-2. This technology offers a significant advantage in terms of mimicking in vivo tissue structures and testing antiviral compounds. In this mini-review, we summarize studies of SARS-CoV-2 using both histopathological and organoid technology approaches.


Author(s):  
Stefan Bittmann

According to the latest research, the novel coronavirus uses the protein angiotensin-converting enzyme 2 (ACE-2) as a receptor for docking to the host cell. Essential for entry is the priming of the spike (S) protein of the virus by host cell proteases. A broadly based team led by infection biologists from the German Primate Centre and with the participation of the Charité Hospital in Berlin, the Hanover Veterinary University Foundation, the BG-UnfallklinikMurnau, the LMU Munich, the Robert Koch Institute and the German Centre for Infection Research wanted to find out how SARS-CoV-2 enters host cells and how this process can be blocked [1]. They have published their findings in the journal "Cell" [1]. The team of scientists was initially able to confirm that SARS-CoV-2 docks to the host cell via the ACE-2 receptor. They also identified Transmembrane serine protease 2 (TMPRSS2) as the cellular protein responsible for entry into the cell [1-3].


Author(s):  
Jinsung Yang ◽  
Simon Petitjean ◽  
Sylvie Derclaye ◽  
Melanie Koehler ◽  
Qingrong Zhang ◽  
...  

Abstract Study of virus entry into cells is of critical importance for a better understanding of the interactions established between the viral glycoproteins and their receptors at the cell surface and could help to develop novel antiviral strategies. The novel coronavirus (SARS-CoV-2) entry into host cells is mediated by the transmembrane spike glycoprotein (S-glycoprotein) and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we used atomic force microscopy to investigate the molecular mechanisms by which the S- glycoprotein binds to the ACE2 receptor. We demonstrated, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as a binding interface within the S- glycoprotein with the ACE2 receptor and we extracted the kinetic and thermodynamic properties of this binding pocket. Altogether, these results give a dynamic picture of the established interaction in physiologically relevant conditions. Finally, we identified and tested several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection.


Author(s):  
Maria Romano ◽  
Alessia Ruggiero ◽  
Flavia Squeglia ◽  
Rita Berisio

AbstractThe novel betacoronavirus SARS-CoV-2 is the etiological agent of the current pandemic COVID-19. Like other coronaviruses, this novel virus relies on the surface Spike glycoprotein to access the host cells, mainly through the interaction of its Receptor Binding Domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2). Therefore, molecular entities able to interfere with binding of the SARS-CoV-2 Spike protein to ACE2 have a great potential to inhibit viral entry. Starting from the available structural data on the interaction between SARS-CoV-2 Spike protein and the host ACE2 receptor, we here engineered a mini-protein with the aim of creating a soluble and stable Spike interactor. This mini-protein, which was recombinantly produced in high yields, possesses a stable α helical conformation and is able to interact with the RBD of glycosylated Spike protein from SARS-CoV-2 with nanomolar affinity, as measured by microscale thermophoresis. By plugging the Spike protein, our mini-protein constitutes a valid tool for the development of treatments against different types of coronavirus.


Sign in / Sign up

Export Citation Format

Share Document