scholarly journals Distant Residues Modulate Conformational Opening in SARS-CoV-2 Spike Protein

2020 ◽  
Author(s):  
Dhiman Ray ◽  
Ly Le ◽  
Ioan Andricioaei

Infection by SARS-CoV-2 involves the attachment of the receptor binding domain (RBD) of its spike proteins to the ACE2 receptors on the peripheral membrane of host cells. Binding is initiated by a down to up conformational change in the spike protein, an opening which presents the RBD to the receptor. To date, computational and experimental studies for therapeutics have concentrated, for good reason, on the RBD. However, the RBD region is highly prone to mutations, and therefore will possibly arise drug resistance. In contrast, we here focus on the correlations between the RBD and residues distant to it in the spike protein. We thereby provide a deeper understanding of the role of distant residues in the molecular mechanism of infection. Predictions of key mutations in distant allosteric binding sites are provided, with implications for therapeutics. Identifying these emerging mutants can also go a long way towards pre-designing vaccines for future outbreaks. The model we use, based on time-independent component analysis (tICA) and protein graph connectivity network, is able to identify multiple residues that exhibit long-distance coupling with the RBD opening. Mutation on these residues can lead to new strains of coronavirus with different degrees of transmissibility and virulence. The most ubiquitous D614G mutation and the A570D mutation of the highly contageous UK SARS-CoV-2 variant are predicted ab-initio from our model. Conversely, broad spectrum therapeutics like drugs and monoclonal antibodies can be generated targeting these key distant but conserved regions of the spike protein.

2021 ◽  
Vol 118 (43) ◽  
pp. e2100943118
Author(s):  
Dhiman Ray ◽  
Ly Le ◽  
Ioan Andricioaei

Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) involves the attachment of the receptor-binding domain (RBD) of its spike proteins to the ACE2 receptors on the peripheral membrane of host cells. Binding is initiated by a down-to-up conformational change in the spike protein, the change that presents the RBD to the receptor. To date, computational and experimental studies that search for therapeutics have concentrated, for good reason, on the RBD. However, the RBD region is highly prone to mutations, and is therefore a hotspot for drug resistance. In contrast, we here focus on the correlations between the RBD and residues distant to it in the spike protein. This allows for a deeper understanding of the underlying molecular recognition events and prediction of the highest-effect key mutations in distant, allosteric sites, with implications for therapeutics. Also, these sites can appear in emerging mutants with possibly higher transmissibility and virulence, and preidentifying them can give clues for designing pan-coronavirus vaccines against future outbreaks. Our model, based on time-lagged independent component analysis (tICA) and protein graph connectivity network, is able to identify multiple residues that exhibit long-distance coupling with the RBD opening. Residues involved in the most ubiquitous D614G mutation and the A570D mutation of the highly contagious UK SARS-CoV-2 variant are predicted ab initio from our model. Conversely, broad-spectrum therapeutics like drugs and monoclonal antibodies can target these key distant-but-conserved regions of the spike protein.


Author(s):  
Erik Procko

SUMMARYThe rapid and escalating spread of SARS coronavirus 2 (SARS-CoV-2) poses an immediate public health emergency. The viral spike protein S binds ACE2 on host cells to initiate molecular events that release the viral genome intracellularly. Soluble ACE2 inhibits entry of both SARS and SARS-2 coronaviruses by acting as a decoy for S binding sites, and is a candidate for therapeutic, prophylactic and diagnostic development. Using deep mutagenesis, variants of ACE2 are identified with increased binding to the receptor binding domain of S. Mutations are found across the interface, in the N90-glycosylation motif, and at buried sites where they are predicted to enhance local folding and presentation of the interaction epitope. When single substitutions are combined, large increases in binding can be achieved. The mutational landscape offers a blueprint for engineering high affinity proteins and peptides that block receptor binding sites on S to meet this unprecedented challenge.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


Author(s):  
Fateme Tavakoli Far ◽  
◽  
Ehsan Amiri-Ardekani ◽  

Since December 2019, a novel beta coronavirus has spread around the world. This virus can cause severe acute respiratory syndrome (SARS). In this study, we reviewed proteases of SARS-CoV-2 based on related articles published in journals indexed by Scopus, PubMed, and Google Scholar from December 2019 to April 2020. Based on this study, we can claim that this coronavirus has about 76% genotype similarity to SARS coronavirus (SARS-CoV). Also, similarities between these two viruses have been found in the mechanism of entry into host cells and pathogenicity. ACE 2, the angiotensin convertase enzyme 2, plays a role in the Renin-Angiotensin-Aldosterone system (RAAS) and blood pressure regulation. Some mechanisms have been reported for the role of ACE 2 in the pathogenicity of SARS-CoV-2. For example, the interaction between the ACE 2 receptor and spike protein mediated by TMPRSS2, Cathepsin B/L, and other enzymes is responsible for the entry of the virus into human cells and pathogenicity. Some host cell endosomal enzymes are necessary to cleavage coronavirus spike protein and cause binding to their common receptor. So, we conclude that molecules like antibodies or small molecules like ACE 2 antagonists and soluble ACE 2 can be used as a good therapeutic candidate to prevent SARS-CoV-2.


2020 ◽  
Vol 14 ◽  
pp. 117793222096550
Author(s):  
Loubna Allam ◽  
Fatima Ghrifi ◽  
Hakmi Mohammed ◽  
Naima El Hafidi ◽  
Rachid El Jaoudi ◽  
...  

The global burden of infections and the rapid spread of viral diseases show the need for new approaches in the prevention and development of effective therapies. To this end, we aimed to explore novel inhibitor compounds that can stop replication or decrease the viral load of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which there is currently no approved treatment. Besides using the angiotensin-converting enzyme (ACE2) receptor as a main gate, the CoV-2 can bind to the glucose-regulating protein 78 (GRP78) receptor to get into the cells to start an infection. Here, we report potential inhibitors comprising small molecules and peptides that could interfere with the interaction of SARS-CoV-2 and its target cells by blocking the recognition of the GRP78 cellular receptor by the viral Spike protein. These inhibitors were discovered through an approach of in silico screening of available databases of bioactive peptides and polyphenolic compounds and the analysis of their docking modes. This process led to the selection of 9 compounds with optimal binding affinities to the target sites. The peptides (satpdb18674, satpdb18446, satpdb12488, satpdb14438, and satpdb28899) act on regions III and IV of the viral Spike protein and on its binding sites in GRP78. However, 4 polyphenols such as epigallocatechin gallate (EGCG), homoeriodictyol, isorhamnetin, and curcumin interact, in addition to the Spike protein and its binding sites in GRP78, with the ATPase domain of GRP78. Our work demonstrates that there are at least 2 approaches to block the spread of SARS-CoV-2 by preventing its fusion with the host cells via GRP78.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 76
Author(s):  
Ivan Antonov ◽  
Yulia A. Medvedeva

Many long noncoding RNAs are bound to chromatin. MEG3 binds to multiple different genomic locations, containing GA-rich motifs, and form RNA-DNA triplex structures. In this work, we test whether the MEG3 binding sites are specific enough to be regulated by a particular lncRNA. We show that at least in the case of MEG3, a subset of the triplex target sites (TTS) is able to hybridize with various different RNAs almost irrespectively of their sequences. Nowadays, the role of chromatin bound RNAs in the formation of 3D chromatin structure is actively discussed. We speculate that such universal TTSs may contribute to establishing long-distance chromosomal contacts.


2021 ◽  
Author(s):  
Aashish Bhatt ◽  
Md. Ehesan Ali

<div>Human cystathionine β-synthase (hCBS) is a unique pyridoxal 5’-phosphate (PLP) dependent enzyme that catalyses the condensation reactions in the transsulfuration pathways. The specific role of Heme in the enzymatic activities has not yet been established, however, several experimental studies indicated the bi-directional communications between the Heme and PLP. Performing classical molecular dynamics (MD) simulations upon developing the necessary force field parameters for the cysteine and histidine bound hexa-coordinated Heme, we have investigated <i>In Silico</i> dynamical aspects of the bi-directional communications. Furthermore, we have investigated the comparative aspects of electron density overlap across the communicating pathways adopting the density functional theory (DFT) in conjunction with the hybrid exchange correlation functional for the CSB<sup>WT</sup> (wild-type) and CBS<sup>R266K</sup> (mutated) case. The atomistic dynamical simulations and subsequent explorations of the electronic structure not only confirm the reported observations but provide an in-depth mechanistic understating of how the non-covalent hydrogen bonding interactions with Cys52 control the such long-distance communication. Our study also provides a convincing answer to the reduced enzymatic activities in the R266K hCBS in comparison to the wild-type enzymes. We further realized that the difference in hydrogen-bonding patterns as well as salt-bridge interactions play the pivotal role in such long distant bi-directional communications.</div>


Author(s):  
Vinicio Armijos-Jaramillo ◽  
Justin Yeager ◽  
Claire Muslin ◽  
Yunierkis Perez-Castillo

AbstractThe emergence of SARS-CoV-2 has resulted in more than 200,000 infections and nearly 9,000 deaths globally so far. This novel virus is thought to have originated from an animal reservoir, and acquired the ability to infect human cells using the SARS-CoV cell receptor hACE2. In the wake of a global pandemic it is essential to improve our understanding of the evolutionary dynamics surrounding the origin and spread of a novel infectious disease. One way theory predicts selection pressures should shape viral evolution is to enhance binding with host cells. We first assessed evolutionary dynamics in select betacoronavirus spike protein genes to predict where these genomic regions are under directional or purifying selection between divergent viral lineages at various scales of relatedness. With this analysis, we determine a region inside the receptor-binding domain with putative sites under positive selection interspersed among highly conserved sites, which are implicated in structural stability of the viral spike protein and its union with human receptor hACE2. Next, to gain further insights into factors associated with coronaviruses recognition of the human host receptor, we performed modeling studies of five different coronaviruses and their potential binding to hACE2. Modeling results indicate that interfering with the salt bridges at hot spot 353 could be an effective strategy for inhibiting binding, and hence for the prevention of coronavirus infections. We also propose that a glycine residue at the receptor binding domain of the spike glycoprotein can have a critical role in permitting bat variants of the coronaviruses to infect human cells.


2021 ◽  
Vol 128 (7) ◽  
pp. 1062-1079
Author(s):  
Carmine Savoia ◽  
Massimo Volpe ◽  
Reinhold Kreutz

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associates with a considerable high rate of mortality and represents currently the most important concern in global health. The risk of more severe clinical manifestation of COVID-19 is higher in males and steeply raised with age but also increased by the presence of chronic comorbidities. Among the latter, early reports suggested that arterial hypertension associates with higher susceptibility to SARS-CoV-2 infection, more severe course and increased COVID-19–related deaths. Furthermore, experimental studies suggested that key pathophysiological hypertension mechanisms, such as activation of the renin-angiotensin system (RAS), may play a role in COVID-19. In fact, ACE2 (angiotensin-converting-enzyme 2) is the pivotal receptor for SARS-CoV-2 to enter host cells and provides thus a link between COVID-19 and RAS. It was thus anticipated that drugs modulating the RAS including an upregulation of ACE2 may increase the risk for infection with SARS-CoV-2 and poorer outcomes in COVID-19. Since the use of RAS-blockers, ACE inhibitors or angiotensin receptor blockers, represents the backbone of recommended antihypertensive therapy and intense debate about their use in the COVID-19 pandemic has developed. Currently, a direct role of hypertension, independent of age and other comorbidities, as a risk factor for the SARS-COV-2 infection and COVID-19 outcome, particularly death, has not been established. Similarly, both current experimental and clinical studies do not support an unfavorable effect of RAS-blockers or other classes of first line blood pressure lowering drugs in COVID-19. Here, we review available data on the role of hypertension and its management on COVID-19. Conversely, some aspects as to how the COVID-19 affects hypertension management and impacts on future developments are also briefly discussed. COVID-19 has and continues to proof the critical importance of hypertension research to address questions that are important for global health.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1038
Author(s):  
Deborah Giordano ◽  
Luigi De Masi ◽  
Maria Antonia Argenio ◽  
Angelo Facchiano

An outbreak by a new severe acute respiratory syndrome betacoronavirus (SARS-CoV-2) has spread CoronaVirus Disease 2019 (COVID-19) all over the world. Immediately, following studies have confirmed the human Angiotensin-Converting Enzyme 2 (ACE2) as a cellular receptor of viral Spike-Protein (Sp) that mediates the CoV-2 invasion into the pulmonary host cells. Here, we compared the molecular interactions of the viral Sp from previous SARS-CoV-1 of 2002 and SARS-CoV-2 with the host ACE2 protein by in silico analysis of the available experimental structures of Sp-ACE2 complexes. The K417 amino acid residue, located in the region of Sp Receptor-Binding Domain (RBD) of the new coronavirus SARS-CoV-2, showed to have a key role for the binding to the ACE2 N-terminal region. The R426 residue of SARS-CoV-1 Sp-RBD also plays a key role, although by interacting with the central region of the ACE2 sequence. Therefore, our study evidenced peculiarities in the interactions of the two Sp-ACE2 complexes. Our outcomes were consistent with previously reported mutagenesis studies on SARS-CoV-1 and support the idea that a new and different RBD was acquired by SARS-CoV-2. These results have interesting implications and suggest further investigations.


Sign in / Sign up

Export Citation Format

Share Document