scholarly journals Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys

2020 ◽  
Author(s):  
Swayam Prakash Srivastava ◽  
Jinpeng Li ◽  
Yuta Takagaki ◽  
Munehiro Kitada ◽  
Julie E. Goodwin ◽  
...  

Defects in endothelial cells cause deterioration in kidney function and structure. Here, we found that endothelial SIRT3 regulates metabolic reprogramming and fibrogenesis in the kidneys of diabetic mice. By analyzing, gain-of-function of the SIRT3 gene by overexpression in a fibrotic mouse strain conferred disease resistance against diabetic kidney fibrosis; while its loss-of-function in endothelial cells exacerbated the levels of diabetic kidney fibrosis. Regulation of endothelial cell SIRT3 on fibrogenic processes was due to tight control over the defective central metabolism and linked-activation of endothelial-to-mesenchymal transition (EndMT). SIRT3 deficiency in endothelial cells stimulated the TGFβ/Smad3-dependent mesenchymal transformations in renal tubular epithelial cells. These data demonstrate that SIRT3 regulates defective metabolism and EndMT-mediated activation of the fibrogenic pathways in the diabetic kidneys. Together, our findings show that endothelial cell SIRT3 is a fundamental regulator of defective metabolism-regulating health and disease processes in the kidney.

2020 ◽  
Vol 13 (635) ◽  
pp. eaaz2597 ◽  
Author(s):  
Sara Lovisa ◽  
Eliot Fletcher-Sananikone ◽  
Hikaru Sugimoto ◽  
Janine Hensel ◽  
Sharmistha Lahiri ◽  
...  

Endothelial-to-mesenchymal transition (EndMT) is a cellular transdifferentiation program in which endothelial cells partially lose their endothelial identity and acquire mesenchymal-like features. Renal capillary endothelial cells can undergo EndMT in association with persistent damage of the renal parenchyma. The functional consequence(s) of EndMT in kidney fibrosis remains unexplored. Here, we studied the effect of Twist or Snail deficiency in endothelial cells on EndMT in kidney fibrosis. Conditional deletion of Twist1 (which encodes Twist) or Snai1 (which encodes Snail) in VE-cadherin+ or Tie1+ endothelial cells inhibited the emergence of EndMT and improved kidney fibrosis in two different kidney injury/fibrosis mouse models. Suppression of EndMT limited peritubular vascular leakage, reduced tissue hypoxia, and preserved tubular epithelial health and function. Hypoxia, which was exacerbated by EndMT, resulted in increased Myc abundance in tubular epithelial cells, enhanced glycolysis, and suppression of fatty acid oxidation. Pharmacological suppression or epithelial-specific genetic ablation of Myc in tubular epithelial cells ameliorated fibrosis and restored renal parenchymal function and metabolic homeostasis. Together, these findings demonstrate a functional role for EndMT in the response to kidney capillary endothelial injury and highlight the contribution of endothelial-epithelial cross-talk in the development of kidney fibrosis with a potential for therapeutic intervention.


2019 ◽  
Vol 99 (2) ◽  
pp. 1281-1324 ◽  
Author(s):  
Sonsoles Piera-Velazquez ◽  
Sergio A. Jimenez

Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.


2021 ◽  
Vol 22 (16) ◽  
pp. 8629
Author(s):  
Nina P. Jordan ◽  
Samuel J. Tingle ◽  
Victoria G. Shuttleworth ◽  
Katie Cooke ◽  
Rachael E. Redgrave ◽  
...  

In fibrotic diseases, myofibroblasts derive from a range of cell types including endothelial-to-mesenchymal transition (EndMT). Increasing evidence suggests that miRNAs are key regulators in biological processes but their profile is relatively understudied in EndMT. In human umbilical vein endothelial cells (HUVEC), EndMT was induced by treatment with TGFβ2 and IL1β. A significant decrease in endothelial markers such as VE-cadherin, CD31 and an increase in mesenchymal markers such as fibronectin were observed. In parallel, miRNA profiling showed that miR-126-3p was down-regulated in HUVECs undergoing EndMT and over-expression of miR-126-3p prevented EndMT, maintaining CD31 and repressing fibronectin expression. EndMT was investigated using lineage tracing with transgenic Cdh5-Cre-ERT2; Rosa26R-stop-YFP mice in two established models of fibrosis: cardiac ischaemic injury and kidney ureteric occlusion. In both cardiac and kidney fibrosis, lineage tracing showed a significant subpopulation of endothelial-derived cells expressed mesenchymal markers, indicating they had undergone EndMT. In addition, miR-126-3p was restricted to endothelial cells and down-regulated in murine fibrotic kidney and heart tissue. These findings were confirmed in patient kidney biopsies. MiR-126-3p expression is restricted to endothelial cells and is down-regulated during EndMT. Over-expression of miR-126-3p reduces EndMT, therefore, it could be considered for miRNA-based therapeutics in fibrotic organs.


2019 ◽  
Vol 115 (12) ◽  
pp. 1716-1731 ◽  
Author(s):  
Melanie S Hulshoff ◽  
Gonzalo del Monte-Nieto ◽  
Jason Kovacic ◽  
Guido Krenning

Abstract Endothelial-to-mesenchymal transition (EndMT) is the process wherein endothelial cells lose their typical endothelial cell markers and functions and adopt a mesenchymal-like phenotype. EndMT is required for development of the cardiac valves, the pulmonary and dorsal aorta, and arterial maturation, but activation of the EndMT programme during adulthood is believed to contribute to several pathologies including organ fibrosis, cardiovascular disease, and cancer. Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, modulate EndMT during development and disease. Here, we review the mechanisms by which non-coding RNAs facilitate or inhibit EndMT during development and disease and provide a perspective on the therapeutic application of non-coding RNAs to treat fibroproliferative cardiovascular disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Sergio A. Jimenez

The pathogenesis of Systemic Sclerosis (SSc) is extremely complex, and despite extensive studies, the exact mechanisms involved are not well understood. Numerous recent studies of early events in SSc pathogenesis have suggested that unknown etiologic factors in a genetically receptive host trigger structural and functional microvascular endothelial cell abnormalities. These alterations result in the attraction, transmigration, and accumulation of immune and inflammatory cells in the perivascular tissues, which in turn induce the phenotypic conversion of endothelial cells and quiescent fibroblasts into activated myofibroblasts, a process known as endothelial to mesenchymal transition or EndoMT. The activated myofibroblasts are the effector cells responsible for the severe and frequently progressive fibrotic process and the fibroproliferative vasculopathy that are the hallmarks of SSc. Thus, according to this hypothesis the endothelial and vascular alterations, which include the phenotypic conversion of endothelial cells into activated myofibroblasts, play a crucial role in the development of the progressive fibrotic process affecting skin and multiple internal organs. The role of endothelial cell and vascular alterations, the potential contribution of endothelial to mesenchymal cell transition in the pathogenesis of the tissue fibrosis, and fibroproliferative vasculopathy in SSc will be reviewed here.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Takako Nagai ◽  
Megumi Kanasaki ◽  
Swayam Prakash Srivastava ◽  
Yuka Nakamura ◽  
Yasuhito Ishigaki ◽  
...  

Endothelial-to-mesenchymal transition (EndMT) emerges as an important source of fibroblasts. MicroRNA let-7 exhibits anti-EndMT effects and fibroblast growth factor (FGF) receptor has been shown to be an important in microRNA let-7 expression. The endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a substrate of angiotensin-converting enzyme (ACE). Here, we found that AcSDKP inhibited the EndMT and exhibited fibrotic effects that were associated with FGF receptor-mediated anti-fibrotic program. Conventional ACE inhibitor plus AcSDKP ameliorated kidney fibrosis and inhibited EndMT compared to therapy with the ACE inhibitor alone in diabetic CD-1 mice. The endogenous AcSDKP levels were suppressed in diabetic animals. Cytokines induced cultured endothelial cells into EndMT; coincubation with AcSDKP inhibited EndMT. Expression of microRNA let-7 family was suppressed in the diabetic kidney; antifibrotic and anti-EndMT effects of AcSDKP were associated with the restoration of microRNA let-7 levels. AcSDKP restored diabetes- or cytokines-suppressed FGF receptor expression/phosphorylation into normal levels both in vivo and in vitro. These results suggest that AcSDKP is an endogenous antifibrotic molecule that has the potential to cure diabetic kidney fibrosis via an inhibition of the EndMT associated with the restoration of FGF receptor and microRNA let-7.


2020 ◽  
Author(s):  
Swayam Prakash Srivastava ◽  
Han Zhou ◽  
Ocean Setia ◽  
Alan Dardik ◽  
Carlos Fernandez-Hernando ◽  
...  

AbstractEndothelial cells play a key role in the regulation of disease and other developmental processes. Defective regulation of endothelial cell homeostasis may cause mesenchymal activation of other endothelial cells by autocrine effects or of neighboring cell types by paracrine effects, and in both cases contribute to organ fibrosis. However, regulatory control of endothelial cell homeostasis, is not well studied. Diabetes induced renal fibrosis in endothelial GR knock out mice (GRfl/fl;Tie 1 Cre; GRECKO) but not in control mice (GRfl/fl); hypercholesterolemia further enhanced severe renal fibrosis in diabetic GRECKO; Apoe−/− (DKO) but not in diabetic littermates (GRfl/fl; Apoe−/−). The fibrogenic phenotype in the kidneys of diabetic GRECKO and diabetic DKO were associated with aberrant cytokine and chemokine reprogramming. Canonical Wnt signaling was identified as new target for the action of endothelial GR. Wnt inhibiton improved kidney fibrosis by mitigating endothelial-to-mesenchymal transition (EndMT) and epithelial-to-mesenchymal transitions (EMT). Similarly, activation of fatty acid oxidation also suppressed kidney fibrosis. Conditioned media from endothelial cells from diabetic GRECKO stimulated Wnt signaling-dependent epithelial-to-mesenchymal transition in tubular epithelial cells from diabetic controls. These data demonstrate that endothelial GR is an essential antifibrotic core molecule in diabetes.


2021 ◽  
Author(s):  
Xianhong Yu ◽  
Yaxi Liu ◽  
Xiaoge Liu ◽  
Haiqing Xiong ◽  
Aibin He

Endothelial cells (ECs) across ages and tissues are highly heterogeneous in developmental origins, structures, functions, and cellular plasticity. Here, we applied CoBATCH for single-cell epigenomic tracing of dynamic EC lineage histories in five mouse organs from development to ageing. Our analyses showed that epigenomic memory reflects both developmental origins and tissue-restricted specialization of EC sublineages but with varying time lengths across organs. To gain insights into cellular plasticity of ECs, we identified bivalent chromatin occupancy of otherwise mutually exclusive EC- (ERG) and mesenchymal-specific (TWIST1/SNAI1) transcription factors promoting endothelial-to-mesenchymal transition. We further revealed that pseudotime trajectories by histone modifications H3K36me3 and H3K27ac faithfully recapitulate short- and long-range EC fate change over senescence, respectively. Together, our data provide a unique exploration of chromatin-level cell fate regulation of organotypic EC lineages across the lifespan.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2282
Author(s):  
Valentina Masola ◽  
Mario Bonomini ◽  
Maurizio Onisto ◽  
Pietro Manuel Ferraro ◽  
Arduino Arduini ◽  
...  

Glucose-based solutions remain the most used osmotic agents in peritoneal dialysis (PD), but unavoidably they contribute to the loss of peritoneal filtration capacity. Here, we evaluated at a molecular level the effects of XyloCore, a new PD solution with a low glucose content, in mesothelial and endothelial cells. Cell viability, integrity of mesothelial and endothelial cell membrane, activation of mesothelial and endothelial to mesenchymal transition programs, inflammation, and angiogenesis were evaluated by several techniques. Results showed that XyloCore preserves mesothelial and endothelial cell viability and membrane integrity. Moreover XyloCore, unlike glucose-based solutions, does not exert pro-fibrotic, -inflammatory, and -angiogenic effects. Overall, the in vitro evidence suggests that XyloCore could represent a potential biocompatible solution promising better outcomes in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document