scholarly journals Post-transcriptional gene regulation by the RNA binding protein IGF2BP3 is critical for MLL-AF4 mediated leukemogenesis

2020 ◽  
Author(s):  
Tiffany M Tran ◽  
Julia Philipp ◽  
Jaspal Bassi ◽  
Neha Nibber ◽  
Jolene Draper ◽  
...  

ABSTRACTDespite recent advances in therapeutic approaches, patients with MLL-rearranged leukemia still have poor outcomes and a high risk of relapse. Here, we found that MLL-AF4, the most common MLL fusion protein in patients, transcriptionally induces IGF2BP3 and that IGF2BP3 strongly amplifies MLL-Af4 mediated leukemogenesis. Deletion of Igf2bp3 significantly increases the survival of mice with MLL-Af4 driven leukemia and greatly attenuates disease. At the cellular level, MLL-Af4 leukemia-initiating cells require Igf2bp3 for their function in leukemogenesis. eCLIP and transcriptome analysis of MLL-Af4 transformed stem and progenitor cells and MLL-Af4 bulk leukemia cells reveals a complex IGF2BP3-regulated post-transcriptional operon governing leukemia cell survival and proliferation. Critical mRNA targets include important leukemogenic genes such as in the Hoxa locus and numerous genes within the Ras signaling pathway. Together, our findings show that IGF2BP3 is an essential positive regulator of MLL-AF4 mediated leukemogenesis and is a potential therapeutic target in this disease.

Leukemia ◽  
2021 ◽  
Author(s):  
Tiffany M. Tran ◽  
Julia Philipp ◽  
Jaspal Singh Bassi ◽  
Neha Nibber ◽  
Jolene M. Draper ◽  
...  

AbstractDespite recent advances in therapeutic approaches, patients with MLL-rearranged leukemia still have poor outcomes. Here, we find that the RNA-binding protein IGF2BP3, which is overexpressed in MLL-translocated leukemia, strongly amplifies MLL-Af4-mediated leukemogenesis. Deletion of Igf2bp3 significantly increases the survival of mice with MLL-Af4-driven leukemia and greatly attenuates disease, with a minimal impact on baseline hematopoiesis. At the cellular level, MLL-Af4 leukemia-initiating cells require Igf2bp3 for their function in leukemogenesis. At the molecular level, IGF2BP3 regulates a complex posttranscriptional operon governing leukemia cell survival and proliferation. IGF2BP3-targeted mRNA transcripts include important MLL-Af4-induced genes, such as those in the Hoxa locus, and the Ras signaling pathway. Targeting of transcripts by IGF2BP3 regulates both steady-state mRNA levels and, unexpectedly, pre-mRNA splicing. Together, our findings show that IGF2BP3 represents an attractive therapeutic target in this disease, providing important insights into mechanisms of posttranscriptional regulation in leukemia.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-22
Author(s):  
Tiffany Tran ◽  
Jaspal Bassi ◽  
Neha Nibber ◽  
Julia Philipp ◽  
Jolene Draper ◽  
...  

Chromosomal rearrangements of the mixed-lineage leukemia (MLL) gene are observed in acute lymphoblastic leukemias (ALL), acute myeloid leukemias (AML), and in rare mixed-lineage leukemia. Despite recent progress in therapeutic approaches, patients with MLL-rearranged (MLLr) leukemias still have very poor outcomes and a high risk of relapse. Of more than 90 fusion partner genes, MLL-AF4 is the most common MLL fusion protein in patients. Previously, we found that the RNA binding protein IGF2BP3 was specifically overexpressed in MLL-rearranged B-ALL, and enforced expression in vivo led to a pathologic expansion of hematopoietic stem and progenitor cells resulting in B and myeloid cell leukocytosis in the periphery. However, the requirement of IGF2BP3 in MLL-AF4 mediated leukemogenesis remains to be determined. Utilizing our previously generated list of differentially regulated targets with IGF2BP3 knockdown and a published dataset of MLL-Af4 targets, we determined that transcripts modulated by IGF2BP3 showed significant enrichment for MLL-Af4-bound genes. Furthermore, we observed that MLL-AF4 directly binds to and transcriptionally induces IGF2BP3. We performed ChIP-PCR assays on RS4;11 and SEM cell lines, human B-ALL cell lines that carry the MLL-AF4 translocation, and determined that the region in the first intron of IGF2BP3 is strongly bound by MLL-AF4. Furthermore, we observed a dose-dependent increase in luciferase reporter activity when we co-transfected a dual-luciferase reporter vector containing the promoter region of IGF2BP3 with increasing levels of MLL-AF4 expressing retroviral vector. To determine the role of Igf2bp3 in MLL-Af4 driven leukemogenesis, we generated the first Igf2bp3 KO murine model. Surprisingly, Igf2bp3 KO mice maintain normal, steady-state hematopoiesis. However, in striking contrast, deletion of Igf2bp3 in the MLL-Af4 leukemia model, significantly increases the survival of MLL-Af4 transplanted mice and greatly attenuates the disease. Furthermore, Igf2bp3 deficiency significantly reduced the tumor burden and disease severity. We observed significant decreases in WBC counts, spleen weights, and infiltrating leukemic cells visualized in histopathological analysis of hematopoietic tissues and quantified by FACS analysis. Moreover, deletion of Igf2bp3 led to a leukemia-initiating cell (LIC) disadvantage in vivo, demonstrated by significantly reduced engraftment in primary transplanted mice and reconstitution of secondary serially transplanted mice. To identify the transcripts directly regulated by Igf2bp3 in the context of MLL-Af4 driven leukemia, we carried out enhanced crosslinking and immunoprecipitation (eCLIP) transcriptome analysis of MLL-Af4 transformed early stem and progenitor cells and primary cells purified from splenic tumors of MLL-Af4 leukemic mice. We discovered an IGF2BP3-regulated post-transcriptional operon governing leukemic cell survival and proliferation, in which mRNA targets include the Hoxa locus and numerous genes within the Ras signaling pathway. In our study, we provide evidence that Igf2bp3 is required for the initiation of MLL-Af4 driven leukemia. We determined that Igf2bp3 is necessary for the development of and function of MLL-Af4 LICs. Mechanistically, we show that Igf2bp3 binds to and modulates the expression of hundreds of critical target transcripts. In summary, we demonstrate that Igf2bp3 is a positive regulator of MLLr leukemogenesis by targeting Hoxa transcripts such as Hoxa9 and numerous Ras signaling pathway transcripts, thereby controlling multiple downstream effector pathways required for disease initiation and aggressiveness. Together, our findings identify IGF2BP3 as an important, potential therapeutic target in this disease. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai P. Hoefig ◽  
Alexander Reim ◽  
Christian Gallus ◽  
Elaine H. Wong ◽  
Gesine Behrens ◽  
...  

AbstractPost-transcriptional gene regulation in T cells is dynamic and complex as targeted transcripts respond to various factors. This is evident for the Icos mRNA encoding an essential costimulatory receptor that is regulated by several RNA-binding proteins (RBP), including Roquin-1 and Roquin-2. Here, we identify a core RBPome of 798 mouse and 801 human T cell proteins by utilizing global RNA interactome capture (RNA-IC) and orthogonal organic phase separation (OOPS). The RBPome includes Stat1, Stat4 and Vav1 proteins suggesting unexpected functions for these transcription factors and signal transducers. Based on proximity to Roquin-1, we select ~50 RBPs for testing coregulation of Roquin-1/2 targets by induced expression in wild-type or Roquin-1/2-deficient T cells. Besides Roquin-independent contributions from Rbms1 and Cpeb4 we also show Roquin-1/2-dependent and target-specific coregulation of Icos by Celf1 and Igf2bp3. Connecting the cellular RBPome in a post-transcriptional context, we find contributions from multiple RBPs to the prototypic regulation of mRNA targets by individual trans-acting factors.


2017 ◽  
Author(s):  
Mukulika Ray ◽  
Gunjan Singh ◽  
Subhash C. Lakhotia

AbstractWe exploited the high Ras activity induced differentiation of supernumerary R7 cells in Drosophila eyes to examine if hsrω lncRNAs influence active Ras signaling. Surprisingly, either down- or up-regulation of hsrω lncRNAs in sev-GAL4>RasV12 expressing eye discs resulted in complete pupal lethality and substantially greater increase in R7 photoreceptor number at the expense of cone cells. Enhanced nuclear p-MAPK and presence of sev-GAL4 driven RasV12 bound RafRBDFLAG in cells not expressing the sev-GAL4 driver indicated non-cell autonomous spread of Ras signaling when hsrω levels were co-altered. RNA-sequencing revealed that down-and up-regulation of hsrω transcripts in sev-GAL4>RasV12 expressing eye discs elevated transcripts of positive or negative modulators, respectively, of Ras signaling so that either condition enhances it. Altered hsrω transcript levels in sev-GAL4>RasV12 expressing discs also affected sn/sno/sca RNAs and some other RNA processing transcript levels. Post-transcriptional changes due to the disrupted intra-cellular dynamicity of omega speckle associated hnRNPs and other RNA-binding proteins that follow down- or up-regulation of hsrω lncRNAs appear to be responsible for the further elevated Ras signaling. Cell autonomous and non-autonomous enhancement of Ras signaling by lncRNAs like hsrω has implications for cell signaling during high Ras activity commonly associated with some cancers.HighlightsOur findings highlight roles of hsrω lncRNAs in conditionally modulating the important Ras signaling pathway and provide evidence for cell non-autonomous Ras signaling in Drosophila eye discs.


1994 ◽  
Vol 14 (3) ◽  
pp. 1553-1565 ◽  
Author(s):  
K E Conrad ◽  
J M Oberwetter ◽  
R Vaillancourt ◽  
G L Johnson ◽  
A Gutierrez-Hartmann

Ras, a small GTP-binding protein, is required for functional receptor tyrosine kinase signaling. Ultimately, Ras alters the activity of specific nuclear transcription factors and regulates novel patterns of gene expression. Using a rat prolactin promoter construct in transient transfection experiments, we show that both oncogenic Ras and activated forms of Raf-1 kinase selectively stimulated the cellular rat prolactin promoter in GH4 rat pituitary cells. We also show that the Ras signal is completely blocked by an expression vector encoding a dominant-negative Raf kinase. Additionally, using a molecular genetic approach, we determined that inhibitory forms of p42 mitogen-activated protein kinase and an Ets-2 transcription factor interfere with both the Ras and the Raf activation of the rat prolactin promoter. These findings define a functional requirement for these signaling constituents in the activation of the prolactin gene, a cell-specific gene which marks the lactotroph pituitary cell type. Further, this analysis allowed us to order the components in the Ras signaling pathway as it impinges on regulation of prolactin gene transcription as Ras-->Raf kinase-->mitogen-activated protein kinase-->Ets. In contrast, we show that intact c-Jun expression inhibited the Ras-induced activation of the prolactin promoter, defining it as a negative regulator of this pathway, whereas c-Jun was able to enhance the Ras activation of an AP-1-driven promoter in GH4 cells. These data show that c-Jun is not the nuclear mediator of the Ras signal for the highly specialized, pituitary cell-specific prolactin cellular promoter. Thus, we have defined a model system which provides an ideal paradigm for studying Ras/Raf signaling pathways and their effects on neuroendocrine cell-specific gene regulation.


1995 ◽  
Vol 5 (1) ◽  
pp. 44-50 ◽  
Author(s):  
David A. Wassarman ◽  
Marc Therrien ◽  
Gerald M. Rubin

2017 ◽  
Vol 73 (4) ◽  
pp. 294-315 ◽  
Author(s):  
Kimberly A. Stanek ◽  
Jennifer Patterson-West ◽  
Peter S. Randolph ◽  
Cameron Mura

The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homolog has been identified in the phylogenetically deep-branching thermophileAquifex aeolicus(Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore,AaeHfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures ofAaeHfq were determined in space groupsP1 andP6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U6RNA reveals that the outer rim of theAaeHfq hexamer features a well defined binding pocket that is selective for uracil. ThisAaeHfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.


2007 ◽  
Vol 176 (7) ◽  
pp. 929-939 ◽  
Author(s):  
Maria Paola Paronetto ◽  
Tilman Achsel ◽  
Autumn Massiello ◽  
Charles E. Chalfant ◽  
Claudio Sette

The RNA-binding protein Sam68 is involved in apoptosis, but its cellular mRNA targets and its mechanism of action remain unknown. We demonstrate that Sam68 binds the mRNA for Bcl-x and affects its alternative splicing. Depletion of Sam68 by RNA interference caused accumulation of antiapoptotic Bcl-x(L), whereas its up-regulation increased the levels of proapoptotic Bcl-x(s). Tyrosine phosphorylation of Sam68 by Fyn inverted this effect and favored the Bcl-x(L) splice site selection. A point mutation in the RNA-binding domain of Sam68 influenced its splicing activity and subnuclear localization. Moreover, coexpression of ASF/SF2 with Sam68, or fusion with an RS domain, counteracted Sam68 splicing activity toward Bcl-x. Finally, Sam68 interacted with heterogenous nuclear RNP (hnRNP) A1, and depletion of hnRNP A1 or mutations that impair this interaction attenuated Bcl-x(s) splicing. Our results indicate that Sam68 plays a role in the regulation of Bcl-x alternative splicing and that tyrosine phosphorylation of Sam68 by Src-like kinases can switch its role from proapoptotic to antiapoptotic in live cells.


Sign in / Sign up

Export Citation Format

Share Document