scholarly journals Sox2 levels configure the WNT response of epiblast progenitors responsible for vertebrate body formation

2020 ◽  
Author(s):  
Robert Blassberg ◽  
Harshil Patel ◽  
Thomas Watson ◽  
Mina Gouti ◽  
Vicki Metzis ◽  
...  

AbstractWNT signalling has multiple roles. It maintains pluripotency of embryonic stem cells, assigns posterior identity in the epiblast and induces mesodermal tissue. We provide evidence that these distinct functions are conducted by the transcription factor SOX2, which adopts different modes of chromatin interaction and regulatory element selection depending on its level of expression. At high levels, SOX2 acts as a pioneer factor, displacing nucleosomes from regulatory elements with high affinity SOX2 binding sites and recruiting the WNT effector, TCF/β-catenin, to maintain pluripotent gene expression. Reducing SOX2 levels destabilises pluripotency and reconfigures SOX2/TCF/β-catenin occupancy to caudal epiblast expressed genes. These contain low-affinity SOX2 sites and are co-occupied by T/Bra and CDX. The loss of SOX2 allows WNT induced mesodermal differentiation. These findings define a role for Sox2 levels in dictating the chromatin occupancy of TCF/β-catenin and reveal how context specific responses to a signal are configured by the level of a transcription factor.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Dana M King ◽  
Clarice Kit Yee Hong ◽  
James L Shepherdson ◽  
David M Granas ◽  
Brett B Maricque ◽  
...  

In embryonic stem cells (ESCs), a core transcription factor (TF) network establishes the gene expression program necessary for pluripotency. To address how interactions between four key TFs contribute to cis-regulation in mouse ESCs, we assayed two massively parallel reporter assay (MPRA) libraries composed of binding sites for SOX2, POU5F1 (OCT4), KLF4, and ESRRB. Comparisons between synthetic cis-regulatory elements and genomic sequences with comparable binding site configurations revealed some aspects of a regulatory grammar. The expression of synthetic elements is influenced by both the number and arrangement of binding sites. This grammar plays only a small role for genomic sequences, as the relative activities of genomic sequences are best explained by the predicted occupancy of binding sites, regardless of binding site identity and positioning. Our results suggest that the effects of transcription factor binding sites (TFBS) are influenced by the order and orientation of sites, but that in the genome the overall occupancy of TFs is the primary determinant of activity.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hamish W King ◽  
Robert J Klose

Pioneer transcription factors recognise and bind their target sequences in inaccessible chromatin to establish new transcriptional networks throughout development and cellular reprogramming. During this process, pioneer factors establish an accessible chromatin state to facilitate additional transcription factor binding, yet it remains unclear how different pioneer factors achieve this. Here, we discover that the pluripotency-associated pioneer factor OCT4 binds chromatin to shape accessibility, transcription factor co-binding, and regulatory element function in mouse embryonic stem cells. Chromatin accessibility at OCT4-bound sites requires the chromatin remodeller BRG1, which is recruited to these sites by OCT4 to support additional transcription factor binding and expression of the pluripotency-associated transcriptome. Furthermore, the requirement for BRG1 in shaping OCT4 binding reflects how these target sites are used during cellular reprogramming and early mouse development. Together this reveals a distinct requirement for a chromatin remodeller in promoting the activity of the pioneer factor OCT4 and regulating the pluripotency network.


2001 ◽  
Vol 21 (19) ◽  
pp. 6418-6428 ◽  
Author(s):  
Shelley Lane ◽  
Song Zhou ◽  
Ting Pan ◽  
Qian Dai ◽  
Haoping Liu

ABSTRACT Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth inSaccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, ascph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect ofcph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1- and Efg1-mediated pathways.


Blood ◽  
2013 ◽  
Vol 121 (1) ◽  
pp. 178-187 ◽  
Author(s):  
Till Schoofs ◽  
Christian Rohde ◽  
Katja Hebestreit ◽  
Hans-Ulrich Klein ◽  
Stefanie Göllner ◽  
...  

Abstract The origin of aberrant DNA methylation in cancer remains largely unknown. In the present study, we elucidated the DNA methylome in primary acute promyelocytic leukemia (APL) and the role of promyelocytic leukemia–retinoic acid receptor α (PML-RARα) in establishing these patterns. Cells from APL patients showed increased genome-wide DNA methylation with higher variability than healthy CD34+ cells, promyelocytes, and remission BM cells. A core set of differentially methylated regions in APL was identified. Age at diagnosis, Sanz score, and Flt3-mutation status characterized methylation subtypes. Transcription factor–binding sites (eg, the c-myc–binding sites) were associated with low methylation. However, SUZ12- and REST-binding sites identified in embryonic stem cells were preferentially DNA hypermethylated in APL cells. Unexpectedly, PML-RARα–binding sites were also protected from aberrant DNA methylation in APL cells. Consistent with this, myeloid cells from preleukemic PML-RARα knock-in mice did not show altered DNA methylation and the expression of PML-RARα in hematopoietic progenitor cells prevented differentiation without affecting DNA methylation. Treatment of APL blasts with all-trans retinoic acid also did not result in immediate DNA methylation changes. The results of the present study suggest that aberrant DNA methylation is associated with leukemia phenotype but is not required for PML-RARα–mediated initiation of leukemogenesis.


2021 ◽  
Author(s):  
Weizheng Liang ◽  
Guipeng Li ◽  
Huanhuan Cui ◽  
Yukai Wang ◽  
Wencheng Wei ◽  
...  

AbstractDifferences in gene expression, which can arise from divergence in cis-regulatory elements or alterations in transcription factors binding specificity, are one of the most important causes of phenotypic diversity during evolution. By protein sequence analysis, we observed high sequence conservation in the DNA binding domain (DBD) of the transcription factor Cdx2 across many vertebrates, whereas three amino acid changes were exclusively found in mouse Cdx2 (mCdx2), suggesting potential positive selection in the mouse lineage. Multi-omics analyses were then carried out to investigate the effects of these changes. Surprisingly, there were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Finally, we used rat-mouse allodiploid embryonic stem cells (RMES) to study the cis effects of Cdx2-mediated gene regulation between the two rodents. Interestingly, whereas Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.Author summaryOur study 1) represented a first systematic analysis of species-specific adaptation in DNA binding pattern of transcription factor. Although the mouse-specific amino acid changes did not manifest functional impact in our system, several explanations may account for it (See Discussion part for the detail); 2) represented a first study of cis-regulation between two reproductively isolated species by using a novel allodiploid system; 3) demonstrated a higher conservation of transcriptional output than that of DNA binding, suggesting the evolvability/plasticity of the latter; 4) finally provided a rich data resource for Cdx2 mediated regulation, including gene expression, chromatin accessibility and DNA binding etc.


2017 ◽  
Author(s):  
Sarah Rennie ◽  
Maria Dalby ◽  
Marta Lloret-Llinares ◽  
Stylianos Bakoulis ◽  
Christian Dalager Vaagensø ◽  
...  

ABSTRACTMammalian gene promoters and enhancers share many properties. They are composed of a unified promoter architecture of divergent transcripton initiation and gene promoters may exhibit enhancer function. However, it is currently unclear how expression strength of a regulatory element relates to its enhancer strength and if the unifying architecture is conserved across Metazoa. Here we investigate the transcription initiation landscape and its associated RNA decay in D. melanogaster. Surprisingly, we find that the majority of active gene-distal enhancers and a considerable fraction of gene promoters are divergently transcribed. We observe quantitative relationships between enhancer potential, expression level and core promoter strength, providing an explanation for indirectly related histone modifications that are reflecting expression levels. Lowly abundant unstable RNAs initiated from weak core promoters are key characteristics of gene-distal developmental enhancers, while the housekeeping enhancer strengths of gene promoters reflect their expression strengths. The different layers of regulation mediated by gene-distal enhancers and gene promoters are also reflected in chromatin interaction data. Our results suggest a unified promoter architecture of many D. melanogaster regulatory elements, that is universal across Metazoa, whose regulatory functions seem to be related to their core promoter elements.


Development ◽  
1998 ◽  
Vol 125 (22) ◽  
pp. 4349-4358 ◽  
Author(s):  
J. Charite ◽  
W. de Graaff ◽  
D. Consten ◽  
M.J. Reijnen ◽  
J. Korving ◽  
...  

Studies of pattern formation in the vertebrate central nervous system indicate that anteroposterior positional information is generated in the embryo by signalling gradients of an as yet unknown nature. We searched for transcription factors that transduce this information to the Hox genes. Based on the assumption that the activity levels of such factors might vary with position along the anteroposterior axis, we devised an in vivo assay to detect responsiveness of cis-acting sequences to such differentially active factors. We used this assay to analyze a Hoxb8 regulatory element, and detected the most pronounced response in a short stretch of DNA containing a cluster of potential CDX binding sites. We show that differentially expressed DNA binding proteins are present in gastrulating embryos that bind to these sites in vitro, that cdx gene products are among these, and that binding site mutations that abolish binding of these proteins completely destroy the ability of the regulatory element to drive regionally restricted expression in the embryo. Finally, we show that ectopic expression of cdx gene products anteriorizes expression of reporter transgenes driven by this regulatory element, as well as that of the endogenous Hoxb8 gene, in a manner that is consistent with them being essential transducers of positional information. These data suggest that, in contrast to Drosophila Caudal, vertebrate cdx gene products transduce positional information directly to the Hox genes, acting through CDX binding sites in their enhancers. This may represent the ancestral mode of action of caudal homologues, which are involved in anteroposterior patterning in organisms with widely divergent body plans and modes of development.


2020 ◽  
Vol 223 (14) ◽  
pp. jeb221622
Author(s):  
Sarah M. Ryan ◽  
Kaitie Wildman ◽  
Briseida Oceguera-Perez ◽  
Scott Barbee ◽  
Nathan T. Mortimer ◽  
...  

ABSTRACTAs organisms are constantly exposed to the damaging effects of oxidative stress through both environmental exposure and internal metabolic processes, they have evolved a variety of mechanisms to cope with this stress. One such mechanism is the highly conserved p38 MAPK (p38K) pathway, which is known to be post-translationally activated in response to oxidative stress, resulting in the activation of downstream antioxidant targets. However, little is known about the role of p38K transcriptional regulation in response to oxidative stress. Therefore, we analyzed the p38K gene family across the genus Drosophila to identify conserved regulatory elements. We found that oxidative stress exposure results in increased p38K protein levels in multiple Drosophila species and is associated with increased oxidative stress resistance. We also found that the p38Kb genomic locus includes conserved AP-1 and lola-PT transcription factor consensus binding sites. Accordingly, over-expression of these transcription factors in D. melanogaster is sufficient to induce transcription of p38Kb and enhances resistance to oxidative stress. We further found that the presence of a putative lola-PT binding site in the p38Kb locus of a given species is predictive of the species' survival in response to oxidative stress. Through our comparative genomics approach, we have identified biologically relevant putative transcription factor binding sites that regulate the expression of p38Kb and are associated with resistance to oxidative stress. These findings reveal a novel mode of regulation for p38K genes and suggest that transcription may play as important a role in p38K-mediated stress responses as post-translational modifications.


2004 ◽  
Vol 32 (1) ◽  
pp. 107-109 ◽  
Author(s):  
E. Tarling ◽  
A. Salter ◽  
A. Bennett

Sterol-regulatory-element-binding protein 1c (SREBP-1c) is one member of the family of transcription factors that stimulate sterol and fatty-acid biosynthesis in animal cells. Human SREBP-1c, mapped to chromosome 17p11.2, is expressed in liver, intestine, skeletal muscle and adipocytes. A section of genomic sequence from a chromosome 17 library, thought to contain the SREBP-1c promoter, was cloned. Putative transcription-factor-binding sites and a potential transcriptional start site were identified using the Genomatix Suite of sequence analysis tools (MatInspector®). Sequence analysis showed the human promoter to be 42% identical with the previously published mouse sequence. Two novel transcription-factor-binding sites were identified: those for PDX-1 (pancreatic–duodenal homoeobox-1) and HNF-4 (hepatic nuclear factor-4). Co-transfection experiments with overexpression plasmids for PDX-1 and HNF-4 suggested that both factors stimulate SREBP-1c gene expression, although further work is required to ascertain their mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document