scholarly journals scRNA-seq-based analysis of skeletal muscle response to denervation reveals selective activation of muscle-resident glial cells and fibroblasts

2020 ◽  
Author(s):  
C Nicoletti ◽  
X Wei ◽  
U. Etxaniz ◽  
D Proietti ◽  
L. Madaro ◽  
...  

SummaryDevelopmental synaptogenesis toward formation of neuromuscular junctions (NMJs) is regulated by the reciprocal exchange of signals derived from nerve or muscle ends, respectively. These signals are re-deployed in adult life to repair NMJ lesions. The emerging heterogeneity of skeletal muscle cellular composition and the functional interplay between different muscle-resident cell types activated in response to homeostatic perturbations challenge the traditional notion that muscle-derived signals uniquely derive from myofibers. We have used single cell RNA sequencing (scRNA-seq) for a longitudinal analysis of gene expression profiles in cells isolated from skeletal muscles subjected to denervation by complete sciatic nerve transection. Our data show that, unlike muscle injury, which massively activates multiple muscle-resident cell types, denervation selectively induced the expansion of two cell types - muscle glial cells and activated fibroblasts. These cells were also identified as putative sources of muscle-derived signals implicated in NMJ repair and extracellular matrix (ECM) remodelling. Pseudo-time analysis of gene expression in muscle glial-derived cells at sequential timepoints post-denervation revealed an initial bifurcation into distinct processes related to either cellular de-differentiation and commitment to specialized cell types, such as Schwann cells, or ECM remodeling. However, at later time points muscle glial-derived cells appear to adopt a more uniform pattern of gene expression, dominated by a reduction of neurogenic signals. Consensual activation of pro-fibrotic and pro-atrophic genes from fibroblasts and other muscle-resident cell types suggests a global conversion of denervated muscles into an environment hostile for NMJ repair, while conductive for progressive development of fibrosis and myofiber atrophy.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing He ◽  
Ping Chen ◽  
Sonia Zambrano ◽  
Dina Dabaghie ◽  
Yizhou Hu ◽  
...  

AbstractMolecular characterization of the individual cell types in human kidney as well as model organisms are critical in defining organ function and understanding translational aspects of biomedical research. Previous studies have uncovered gene expression profiles of several kidney glomerular cell types, however, important cells, including mesangial (MCs) and glomerular parietal epithelial cells (PECs), are missing or incompletely described, and a systematic comparison between mouse and human kidney is lacking. To this end, we use Smart-seq2 to profile 4332 individual glomerulus-associated cells isolated from human living donor renal biopsies and mouse kidney. The analysis reveals genetic programs for all four glomerular cell types (podocytes, glomerular endothelial cells, MCs and PECs) as well as rare glomerulus-associated macula densa cells. Importantly, we detect heterogeneity in glomerulus-associated Pdgfrb-expressing cells, including bona fide intraglomerular MCs with the functionally active phagocytic molecular machinery, as well as a unique mural cell type located in the central stalk region of the glomerulus tuft. Furthermore, we observe remarkable species differences in the individual gene expression profiles of defined glomerular cell types that highlight translational challenges in the field and provide a guide to design translational studies.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 301-301
Author(s):  
Chaoyang Li ◽  
Qianglin Liu ◽  
Matt Welborn ◽  
Leshan Wang ◽  
Yuxia Li ◽  
...  

Abstract The amount of intramuscular fat directly influences the meat quality. However, significant differences in the ability to accumulate intramuscular fat are present among different beef cattle breeds. While Wagyu, a cattle breed that originated from Japan, is renowned for abundant intramuscular fat, Brahman cattle generally have very little intramuscular fat accumulation and produce tougher meat. We identified that bovine intramuscular fat is derived from a group of bipotent progenitor cells named fibro/adipogenic progenitors (FAPs) which also give rise to fibroblasts. Thus, the variation in intramuscular fat development between Wagyu and Brahman is likely attributed to the difference in FAPs between these two breeds. In order to understand the gene expression difference between FAPs of the two breeds, single-cell RNA-seq was performed using total single-nucleated cells isolated from the longissimus muscle of young purebred Wagyu, purebred Brahman, and Wagyu-Brahman cross cattle. FAPs constitute the largest single-nucleated cell population in both Wagyu and Brahman skeletal muscle. Multiple subpopulations of FAPs with different gene expression profiles were identified, suggesting that FAP is a heterogeneous population. A unique FAP cluster expressing lower levels of fibrillar collagen and extracellular remodeling enzyme genes but higher levels of select proadipogenic genes was identified exclusively in Wagyu skeletal muscle, which likely contributes to the robust intramuscular adipogenic efficiency of Wagyu FAPs. In conclusion, the difference in the cellular composition and gene expression of FAPs between Wagyu and Brahman cattle likely contribute to their distinct meat quality.


2005 ◽  
Vol 34 (2) ◽  
pp. 299-315 ◽  
Author(s):  
Young Ho Suh ◽  
Younyoung Kim ◽  
Jeong Hyun Bang ◽  
Kyoung Suk Choi ◽  
June Woo Lee ◽  
...  

Insulin resistance occurs early in the disease process, preceding the development of type 2 diabetes. Therefore, the identification of molecules that contribute to insulin resistance and leading up to type 2 diabetes is important to elucidate the molecular pathogenesis of the disease. To this end, we characterized gene expression profiles from insulin-sensitive tissues, including adipose tissue, skeletal muscle, and liver tissue of Zucker diabetic fatty (ZDF) rats, a well characterized type 2 diabetes animal model. Gene expression profiles from ZDF rats at 6 weeks (pre-diabetes), 12 weeks (diabetes), and 20 weeks (late-stage diabetes) were compared with age- and sex-matched Zucker lean control (ZLC) rats using 5000 cDNA chips. Differentially regulated genes demonstrating > 1.3-fold change at age were identified and categorized through hierarchical clustering analysis. Our results showed that while expression of lipolytic genes was elevated in adipose tissue of diabetic ZDF rats at 12 weeks of age, expression of lipogenic genes was decreased in liver but increased in skeletal muscle of 12 week old diabetic ZDF rats. These results suggest that impairment of hepatic lipogenesis accompanied with the reduced lipogenesis of adipose tissue may contribute to development of diabetes in ZDF rats by increasing lipogenesis in skeletal muscle. Moreover, expression of antioxidant defense genes was decreased in the liver of 12-week old diabetic ZDF rats as well as in the adipose tissue of ZDF rats both at 6 and 12 weeks of age. Cytochrome P450 (CYP) genes were also significantly reduced in 12 week old diabetic liver of ZDF rats. Genes involved in glucose utilization were downregulated in skeletal muscle of diabetic ZDF rats, and the hepatic gluconeogenic gene was upregulated in diabetic ZDF rats. Genes commonly expressed in all three tissue types were also observed. These profilings might provide better fundamental understanding of insulin resistance and development of type 2 diabetes.


Author(s):  
Ana M. Sotoca ◽  
Michael Weber ◽  
Everardus J. J. van Zoelen

Human mesenchymal stem cells have a high potential in regenerative medicine. They can be isolated from a variety of adult tissues, including bone marrow, and can be differentiated into multiple cell types of the mesodermal lineage, including adipocytes, osteocytes, and chondrocytes. Stem cell differentiation is controlled by a process of interacting lineage-specific and multipotent genes. In this chapter, the authors use full genome microarrays to explore gene expression profiles in the process of Osteo-, Adipo-, and Chondro-Genic lineage commitment of human mesenchymal stem cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chenlei Zheng ◽  
Cheng Wang ◽  
Tan Zhang ◽  
Ding Li ◽  
Xiao-feng Ni ◽  
...  

Objective. Posttransplantation diabetes mellitus (PTDM) is a known complication of transplantation that affects the prognosis. Tacrolimus (Tac or FK506) is a widely used immunosuppressant that has been reported to be a risk factor for PTDM and to further induce complications in heart and skeletal muscles, but the mechanism is still largely unknown. In our preliminary experiments, we found that after Tac treatment, blood glucose increased, and the weight of skeletal muscle declined. Here, we hypothesize that tacrolimus can induce PTDM and influence the atrophy of skeletal muscle. Methods. We designed preliminary experiments to establish a tacrolimus-induced PTDM model. Gene expression profiles in quadriceps muscle from this rat model were characterized by oligonucleotide microarrays. Then, differences in gene expression profiles in muscle from PTDM rats that received tacrolimus and control subjects were analyzed by using GeneSpring GX 11.0 software (Agilent). Functional annotation and enrichment analysis of differentially expressed genes (DEGs) helped us identify clues for the side effects of tacrolimus. Results. Our experiments found that the quadriceps in tacrolimus-induced PTDM group were smaller than those in the control group. The study identified 275 DEGs that may be responsible for insulin resistance and the progression of PTDM, including 86 upregulated genes and 199 downregulated genes. GO and KEGG functional analysis of the DEGs showed a significant correlation between PTDM and muscle development. PPI network analysis screened eight hub genes and found that they were related to troponin and tropomyosin. Conclusions. This study explored the molecular mechanism of muscle atrophy in a tacrolimus-induced PTDM model by bioinformatics analyses. We identified 275 DEGs and identified significant biomarkers for predicting the development and progression of tacrolimus-induced PTDM.


2020 ◽  
Vol 7 (5) ◽  
pp. 881-896 ◽  
Author(s):  
Dongxu He ◽  
Aiqin Mao ◽  
Chang-Bo Zheng ◽  
Hao Kan ◽  
Ka Zhang ◽  
...  

Abstract The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.


2005 ◽  
Vol 73 (4) ◽  
pp. 2327-2335 ◽  
Author(s):  
Yumiko Hosogi ◽  
Margaret J. Duncan

ABSTRACT Porphyromonas gingivalis, a gram-negative oral anaerobe, is strongly associated with adult periodontitis. The adherence of the organism to host epithelium signals changes in both cell types as bacteria initiate infection and colonization and epithelial cells rally their defenses. We hypothesized that the expression of a defined set of P. gingivalis genes would be consistently up-regulated during infection of HEp-2 human epithelial cells. P. gingivalis genome microarrays were used to compare the gene expression profiles of bacteria that adhered to HEp-2 cells and bacteria that were incubated alone. Genes whose expression was temporally up-regulated included those involved in the oxidative stress response and those encoding heat shock proteins that are essential to maintaining cell viability under adverse conditions. The results suggest that contact with epithelial cells induces in P. gingivalis stress-responsive pathways that promote the survival of the bacterium.


Neuroglia ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 193-219 ◽  
Author(s):  
Suzana Herculano-Houzel ◽  
Sandra Dos Santos

Vertebrate neurons are enormously variable in morphology and distribution. While different glial cell types do exist, they are much less diverse than neurons. Over the last decade, we have conducted quantitative studies of the absolute numbers, densities, and proportions at which non-neuronal cells occur in relation to neurons. These studies have advanced the notion that glial cells are much more constrained than neurons in how much they can vary in both development and evolution. Recent evidence from studies on gene expression profiles that characterize glial cells—in the context of progressive epigenetic changes in chromatin during morphogenesis—supports the notion of constrained variation of glial cells in development and evolution, and points to the possibility that this constraint is related to the late differentiation of the various glial cell types. Whether restricted variation is a biological given (a simple consequence of late glial cell differentiation) or a physiological constraint (because, well, you do not mess with the glia without consequences that compromise brain function to the point of rendering those changes unviable), we predict that the restricted variation in size and distribution of glial cells has important consequences for neural tissue function that is aligned with their many fundamental roles being uncovered.


2019 ◽  
Author(s):  
Arnav Moudgil ◽  
Michael N. Wilkinson ◽  
Xuhua Chen ◽  
June He ◽  
Alex J. Cammack ◽  
...  

AbstractIn situ measurements of transcription factor (TF) binding are confounded by cellular heterogeneity and represent averaged profiles in complex tissues. Single cell RNA-seq (scRNA-seq) is capable of resolving different cell types based on gene expression profiles, but no technology exists to directly link specific cell types to the binding pattern of TFs in those cell types. Here, we present self-reporting transposons (SRTs) and their use in single cell calling cards (scCC), a novel assay for simultaneously capturing gene expression profiles and mapping TF binding sites in single cells. First, we show how the genomic locations of SRTs can be recovered from mRNA. Next, we demonstrate that SRTs deposited by the piggyBac transposase can be used to map the genome-wide localization of the TFs SP1, through a direct fusion of the two proteins, and BRD4, through its native affinity for piggyBac. We then present the scCC method, which maps SRTs from scRNA-seq libraries, thus enabling concomitant identification of cell types and TF binding sites in those same cells. As a proof-of-concept, we show recovery of cell type-specific BRD4 and SP1 binding sites from cultured cells. Finally, we map Brd4 binding sites in the mouse cortex at single cell resolution, thus establishing a new technique for studying TF biology in situ.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bárbara Andrade Barbosa ◽  
Saskia D. van Asten ◽  
Ji Won Oh ◽  
Arantza Farina-Sarasqueta ◽  
Joanne Verheij ◽  
...  

AbstractDeconvolution of bulk gene expression profiles into the cellular components is pivotal to portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However, the inherently variable nature of gene expression requires a comprehensive statistical model and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian framework to estimate both cellular composition and gene expression profiles for each cell type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of cells due to the efficient variational inference. Throughout an intensive evaluation with > 700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene expression variability and better completeness than conventional methods, in particular, to reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool to unravel heterogeneous cellular activity in complex biological systems from standard bulk gene expression data.


Sign in / Sign up

Export Citation Format

Share Document