scholarly journals Metronomic therapy prevents emergence of drug resistance by maintaining the dynamic of intratumor heterogeneity

2021 ◽  
Author(s):  
Maryna Bondarenko ◽  
Marion Le Grand ◽  
Yuval Shaked ◽  
Ziv Raviv ◽  
Guillemette Chapuisat ◽  
...  

AbstractDespite recent advances in deciphering cancer drug resistance mechanisms, relapse is a widely observed phenomenon in advanced cancers, mainly due to intratumor clonal heterogeneity. How tumor clones progress and impact each other remains elusive. By better understanding clone dynamics, we could reveal valuable biological insights and unveil vulnerabilities that could be therapeutically exploited. In this study, we developed 2D and 3D non-small cell lung cancer co-culture systems and defined a phenomenological mathematical model. Our results demonstrated a dominant role of the drug-sensitive clones over the drug-resistant ones under untreated conditions. Model predictions and their experimental in vitro and in vivo validations indicated that metronomic schedule leads to a better regulation of tumor cell heterogeneity over time than maximum-tolerated dose schedule, while achieving control of global tumor progression. We finally showed that drug-sensitive clones exert a suppressive effect on the proliferation of the drug-resistant ones through a paracrine mechanism way, which is linked to metabolic cell clone activity. Altogether, these computational and experimental approaches allow assessment of drug schedules controlling drug-sensitive and -resistant clone balance and highlight the potential of targeting cell metabolism to manage intratumor heterogeneity.SignificanceCombined computational and experimental models reveal how drug-sensitive tumor cells exert their dominance over drug-resistant cells and how it impacts optimal chemotherapy scheduling.

2021 ◽  
Author(s):  
Jakub Kryczka ◽  
Joanna Boncela

Abstract Colorectal cancer (CRC) is one of the most prominent causes of cancer death worldwide. Chemotherapeutic regimens consisting of different drugs combinations such as 5-fluorouracil, and oxaliplatin (FOLFOX) or irinotecan (FOLFIRI) have been proven successful in the treatment of CRC. However, chemotherapy often leads to the acquisition of cancer drug resistance followed by metastasis and in the aftermath therapeutic failure. The molecular mechanism responsible for drug resistance is still unclear. The systemic search for new biomarkers of this phenomenon may identify new genes and pathways. To understand the drug resistance mechanism in CRC, the in vitro study based on the molecular analysis of drug-sensitive cells lines vs drug-resistant cells lines has been used. In our study to bridge the gap between in vitro and in vivo study, we compared the expression profiles of cell lines and patient samples from the publicly available database to select the new candidate genes for irinotecan resistance. Using The Gene Expression Omnibus (GEO) database of CRC cell lines (HT29, HTC116, LoVo, and their respective irinotecan-resistant variants) and patient samples (GSE42387, GSE62080, and GSE18105) we compared the changes in the mRNA expression profile of the main genes involved in irinotecan body’s processing, such as transport out of the cells and metabolism. Furthermore, using a protein-protein interaction network of differently expressed genes between FOLFIRI resistant and sensitive CRC patients, we have selected top networking proteins (upregulated: NDUFA2, SDHD, LSM5, DCAF4, and COX10, downregulated: RBM8A, TIMP1, QKI, TGOLN2, and PTGS2). Our analysis provided several potential irinotecan resistance markers, previously not described as such.


ISRN Oncology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Fei Chu ◽  
Jessica A. Naiditch ◽  
Sandra Clark ◽  
Yi-Yong Qiu ◽  
Xin Zheng ◽  
...  

Resistance to cytotoxic agents has long been known to be a major limitation in the treatment of human cancers. Although many mechanisms of drug resistance have been identified, chemotherapies targeting known mechanisms have failed to lead to effective reversal of drug resistance, suggesting that alternative mechanisms remain undiscovered. Previous work identified midkine (MK) as a novel putative survival molecule responsible for cytoprotective signaling between drug-resistant and drug-sensitive neuroblastoma, osteosarcoma and breast carcinoma cells in vitro. In the present study, we provide further in vitro and in vivo studies supporting the role of MK in neuroblastoma cytoprotection. MK overexpressing wild type neuroblastoma cells exhibit a cytoprotective effect on wild type cells when grown in a co-culture system, similar to that seen with doxorubicin resistant cells. siRNA knockdown of MK expression in doxorubicin resistant neuroblastoma and osteosarcoma cells ameliorates this protective effect. Overexpression of MK in wild type neuroblastoma cells leads to acquired drug resistance to doxorubicin and to the related drug etoposide. Mouse studies injecting various ratios of doxorubicin resistant or MK transfected cells with GFP transfected wild type cells confirm this cytoprotective effect in vivo. These findings provide additional evidence for the existence of intercellular cytoprotective signals mediated by MK which contribute to chemotherapy resistance in neuroblastoma.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4436-4436
Author(s):  
Barbara Muz ◽  
Pilar De La Puente ◽  
Micah John Luderer ◽  
Farideh Ordikhani ◽  
Abdel Kareem Azab

Abstract Introduction: Multiple myeloma (MM) is a lymphoplasmacytic malignancy characterized by the continuous spread of MM cells in and out of the bone marrow (BM). Despite the introduction of novel therapies, cancer patients relapse due to the development of drug resistant cells, which are, at least in part, promoted by hypoxia. Therefore, in this study we aimed to overcome drug resistance in MM by inhibition of the hypoxic responses in these cells. Tirapazamine (TPZ) is a hypoxia-activated pro-drug causing cell apoptosis, which has been shown to improve the outcome of patients with solid tumors when combined with radiotherapy; however, it has not been tested in MM. We used TPZ for the first time in MM to target the drug resistant cancer cells and sensitize them to therapy. Methods: To test the effect of TPZ on tumor survival in vitro, MM cell lines (MM1.s, H929, OPM1, RPMI8226) were exposed to normoxia (21% O2) or hypoxia (1% O2) for 24 hours with different concentrations of TPZ in order to obtain an IC50, and cell survival was assessed using MTT assay. Also, a combination of bortezomib and carfilzomib with or without TPZ was tested on cell survival. For in vivo study, 5 x 106 MM1s-Luc-GFP cells were injected intravenously (IV) into SCID mice and tumor progression was monitored for 3 weeks by bioluminescent imaging. First, we tested the hypoxic status of mice treated with and without a high-dose bortezomib (1.5mg/kg). Pimonidazole (PIM) was injected intraperitoneally (IP) into mice and 4 hours later BM was harvested, stained with anti-PIM-APC antibody and followed by measuring PIM signal in MM1s-GFP+ cells using flow cytometry. Second, we developed drug resistant cells by treating mice with a high-dose bortezomib (1.5mg/kg), and then treated with (1) bortezomib only (0.5mg/kg; n=3), or (2) bortezomib and TPZ (40mg/kg; n=3), all administered IP sequentially twice a week. The number of residual MM1s-GFP+ cells was calculated by flow cytometry. Results: We found that TPZ was active in a dose-dependent manner only in hypoxic conditions in MM cell lines. We showed that residual MM cells in the BM after high-dose bortezomib are hypoxic, as demonstrated by PIM staining. The combination of TPZ with bortezomib and carfilzomib resensitized cancer cells to death in hypoxia, overcoming hypoxia-induced drug resistance in vitro. Moreover, TPZ-treatment in combination with bortezomib further decreased residual MM cells in vivo. Conclusions: We reported that MRD was hypoxic and that TPZ, which was cytotoxic for MM cells only in hypoxic conditions, overcame hypoxia-induced drug resistance in vitro and killed bortezomib-resistant residual MM cells in vivo. This is the first study to show the efficacy of TPZ in MM. This data provides a preclinical basis for future clinical trials testing efficacy of TPZ in MM. Disclosures Azab: Selexys: Research Funding; Karyopharm: Research Funding; Cell Works: Research Funding; Targeted Therapeutics LLC: Other: Founder and owner ; Verastem: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2765-2765 ◽  
Author(s):  
Yongsheng Ruan ◽  
Eun Ji Gang ◽  
Hye-Na Kim ◽  
Chintan Parekh ◽  
Hisham Abdel-Azim ◽  
...  

Abstract Background. Even though remarkable progress has been made in the treatment of childhood acute lymphoblastic leukemia (ALL), salvage of relapse patients remains a challenge. The role of the bone marrow (BM) microenvironment is critical to protect leukemia cells from chemotherapy. The BM microenvironment promotes cell adhesion-mediated drug resistance (CAM-DR) in ALL.We and others have shown that the adhesion molecule integrin α4, referred to hereafter as α4, mediates drug resistance of B-ALL. In our previous studies, we showed that both α4 blockade by natalizumab and inhibition by the small molecule α4 antagonist TBC3486 can sensitize relapsed ALL cells to chemotherapy. However, no α4 targeting therapy is currently clinically available to treat leukemia. Here, we preclinically evaluate a novel non-peptidic small molecule antagonist, AVA4746, which has been safely used in clinical studies, as a potential new approach to combat drug resistant ALL. Method. Six refractory or relapsed primary pre-B ALL cases were used for in vitro studies. Viability was assessed by trypan blue counts or annexin V/7AAD flow cytometric analysis and metabolic activity was evaluated by Cytoscan WST-1 assay. For in vivo evaluation a NOD/SCID IL2Rγ-/- xenograft model of primary pre-B ALL (LAX7R) was used.AVA4746 (15mg/kg) was administered by oral gavage twice a day continuously for 14 days, and vincristine, dexamethasone, L-asparaginase (VDL) was given intraperitoneally (weekly) for 4 weeks. Overall survival was determined by Kaplan-Meier Survival analysis. Results. AVA4746 caused a significant decrease in mean fluorescence intensity (MFI) of α4 expression in six out of six ALL cases at doses of both 5μM and 25μM after 24 hours and 96 hours compared to DMSO control. Interestingly, decreased protein expression of α4 was also observed by Western Blot analysis all six ALL cases. We tested next in two cases (LAX53, ICN13), if AVA4746 de-adheres ALL cells from its counter receptor VCAM-1. The percentages of adherence after treatment with AVA4746 (25μM) were significantly lower than after DMSO treatment (10.3%±4.9% vs. 99.9%±7.6%, p= 0.00007 for LAX7R; 8.1%±1.0% vs. 100.1%±13.6%, p= 0.0003 for LAX53; 9.0%±1.6% vs. 100.0%±14.0%, p=0.0004 for ICN13). AVA4746 was not associated with apoptosis in vitro alone or in combination with chemotherapy (VDL). Metabolic activity as assessed by WST-1 assay was markedly decreased by AVA4746 in two of two ALL cases. AVA4746 also decreased ALL proliferation in two out of two ALL samples tested. In vivo, AVA4746 in combination with VDL chemotherapy treatment led to significant prolongation of overall survival (n=6) compared with the VDL only treated group (n=6) (MST= 78.5 days vs MST= 68 days; P<0.05). There was no significant difference in survival between the PBS control group (n=5) and the AVA4746 mono-treatment group (n=5) (MST=38days vs MST= 38days). Conclusion. We have identified α4 as a central adhesion molecule in CAM-DR of ALL and have shown that AVA-4746, an orally available and specific α4 antagonist, which has been safely used in clinical studies, downregulates α4 in primary ALL and functionally de-adheres them from VCAM-1. Critically, we demonstrated that inhibition of α4 in combination with standard chemotherapy can prolong the survival of NSG mice bearing pre-B ALL. These data support further study of inhibition of α4 using AVA4746 as a novel strategy to treat drug resistant B lineage ALL. Disclosures Bhojwani: Amgen: Other: Blinatumumab global pediatric advisory board 2015. Wayne:Spectrum Pharmaceuticals: Honoraria, Other: Travel Support, Research Funding; Kite Pharma: Honoraria, Other: Travel support, Research Funding; Pfizer: Consultancy, Honoraria, Other: Travel Support; Medimmune: Honoraria, Other: Travel Support, Research Funding; NIH: Patents & Royalties. Kim:Antisense Therapeutics Ltd: Patents & Royalties.


Haematologica ◽  
2019 ◽  
Vol 105 (12) ◽  
pp. 2813-2823 ◽  
Author(s):  
Nasrin Rastgoo ◽  
Jian Wu ◽  
Mariah Liu ◽  
Maryam Pourabdollah ◽  
Eshetu G. Atenafu ◽  
...  

The mechanisms of drug resistance in multiple myeloma are poorly understood. Here we show that CD47, an integrin-associated receptor, is significantly upregulated in drug resistant myeloma cells in comparison with parental cells, and that high expression of CD47 detected by immunohistochemistry is associated with shorter progression free and overall survivals in multiple myeloma patients. We show that miR-155 is expressed at low levels in drug resistant myeloma cells and is a direct regulator of CD47 through its 3'UTR. Furthermore, low miR-155 levels are associated with advanced stages of disease. MiR-155 overexpression suppressed CD47 expression on myeloma cell surface, leading to induction of phagocytosis of myeloma cells by macrophages and inhibition of tumor growth. MiR-155 overexpression also re-sensitized drug-resistant myeloma cells to bortezomib leading to cell death through targeting TNFAIP8, a negative mediator of apoptosis in vitro and in vivo. Thus, miR-155 mimics may serve as a promising new therapeutic modality by promoting phagocytosis and inducing apoptosis in patients with refractory/relapsed multiple myeloma.


2021 ◽  
Vol 14 (5) ◽  
pp. 470
Author(s):  
Nirmala Tilija Pun ◽  
Chul-Ho Jeong

Cancer is incurable because progressive phenotypic and genotypic changes in cancer cells lead to resistance and recurrence. This indicates the need for the development of new drugs or alternative therapeutic strategies. The impediments associated with new drug discovery have necessitated drug repurposing (i.e., the use of old drugs for new therapeutic indications), which is an economical, safe, and efficacious approach as it is emerged from clinical drug development or may even be marketed with a well-established safety profile and optimal dosing. Statins are inhibitors of HMG-CoA reductase in cholesterol biosynthesis and are used in the treatment of hypercholesterolemia, atherosclerosis, and obesity. As cholesterol is linked to the initiation and progression of cancer, statins have been extensively used in cancer therapy with a concept of drug repurposing. Many studies including in vitro and in vivo have shown that statin has been used as monotherapy to inhibit cancer cell proliferation and induce apoptosis. Moreover, it has been used as a combination therapy to mediate synergistic action to overcome anti-cancer drug resistance as well. In this review, the recent explorations are done in vitro, in vivo, and clinical trials to address the action of statin either single or in combination with anti-cancer drugs to improve the chemotherapy of the cancers were discussed. Here, we discussed the emergence of statin as a lipid-lowering drug; its use to inhibit cancer cell proliferation and induction of apoptosis as a monotherapy; and its use in combination with anti-cancer drugs for its synergistic action to overcome anti-cancer drug resistance. Furthermore, we discuss the clinical trials of statins and the current possibilities and limitations of preclinical and clinical investigations.


2020 ◽  
Author(s):  
Ziyuan Lu ◽  
Jiaming Tang ◽  
Yuling Li ◽  
Guohua Liang ◽  
Xiaoyun Chen ◽  
...  

Abstract Background: In chronic myeloid leukemia (CML), resistance to tyrosine kinase inhibitors (TKIs) is still a serious clinical challenge, especially in the context of multi-resistance BCR-ABL mutations, such as T315I. Increasing evidence has demonstrated that mitochondrial fission plays an important role in cancer stem cell maintenance and drug resistance. Therefore, as a vital fission-related protein, DRP1 serves as a novel target for cancer treatment. However, whether DRP1 inhibition could overcome imatinib resistance in CML remains unknown.Methods: We used bioinformatic analysis and a confocal microscopy experimental approach to investigate whether mitochondrial fission could be involved in drug resistance in CML. Next, we applied biological and metabolic detection methods to reveal the roles of DPR1 in autophagy, apoptosis, and mitochondrial respiration in CML cells and determine whether coupling imatinib with DRP1 inhibition has a synergetic anti-leukemic effect on both drug-sensitive and drug-resistant CML cells. Results: Resistant CML cells displayed fragmented mitochondria and were accompanied by overexpression of active DRP1 compared with their sensitive counterparts. Furthermore, blocking DRP1 decreased mitochondrial respiration via the CDK5/CAMK2-DRP1-AMPK signaling pathway. Additionally, DRP1 inhibition perturbed the balance between mitochondrial-dependent apoptosis and autophagy, which led to cell death. Finally, combination treatment with imatinib and DRP1 inhibition exhibited a synergetic anti-leukemic effect on both drug-sensitive and drug-resistant CML cells (including CML cells carrying T315I mutation) in in vitro or in vivo experiments.Conclusions: Combination treatment with imatinib and DRP1 inhibition may represent a promising strategy to overcome CML drug resistance.


2020 ◽  
Vol 117 (36) ◽  
pp. 22473-22483 ◽  
Author(s):  
Caitlin H. Kowalski ◽  
Kaesi A. Morelli ◽  
Daniel Schultz ◽  
Carey D. Nadell ◽  
Robert A. Cramer

Human fungal infections may fail to respond to contemporary antifungal therapies in vivo despite in vitro fungal isolate drug susceptibility. Such a discrepancy between in vitro antimicrobial susceptibility and in vivo treatment outcomes is partially explained by microbes adopting a drug-resistant biofilm mode of growth during infection. The filamentous fungal pathogenAspergillus fumigatusforms biofilms in vivo, and during biofilm growth it has reduced susceptibility to all three classes of contemporary antifungal drugs. Specific features of filamentous fungal biofilms that drive antifungal drug resistance remain largely unknown. In this study, we applied a fluorescence microscopy approach coupled with transcriptional bioreporters to define spatial and temporal oxygen gradients and single-cell metabolic activity withinA. fumigatusbiofilms. Oxygen gradients inevitably arise duringA. fumigatusbiofilm maturation and are both critical for, and the result of,A. fumigatuslate-stage biofilm architecture. We observe that these self-induced hypoxic microenvironments not only contribute to filamentous fungal biofilm maturation but also drive resistance to antifungal treatment. Decreasing oxygen levels toward the base ofA. fumigatusbiofilms increases antifungal drug resistance. Our results define a previously unknown mechanistic link between filamentous fungal biofilm physiology and contemporary antifungal drug resistance. Moreover, we demonstrate that drug resistance mediated by dynamic oxygen gradients, found in many bacterial biofilms, also extends to the fungal kingdom. The conservation of hypoxic drug-resistant niches in bacterial and fungal biofilms is thus a promising target for improving antimicrobial therapy efficacy.


2012 ◽  
Vol 56 (10) ◽  
pp. 5142-5148 ◽  
Author(s):  
Catherine Vilchèze ◽  
William R. Jacobs

ABSTRACTThe challenges of developing new drugs to treat tuberculosis (TB) are indicated by the relatively small number of candidates entering clinical trials in the past decade. To overcome these issues, we reexamined two FDA-approved antibacterial drugs, sulfamethoxazole (SMX) and trimethoprim (TMP), for use in TB treatment. SMX and TMP inhibit folic acid biosynthesis and are used in combination to treat infections of the respiratory, urinary, and gastrointestinal tracts. The MICs of SMX and TMP, alone and in combination, were determined for drug-susceptible, multidrug-resistant (MDR), and extensively drug-resistantMycobacterium tuberculosisstrains. While TMP alone was not effective againstM. tuberculosis, the combination of TMP and SMX was bacteriostatic againstM. tuberculosis. Surprisingly, the combination of SMX and TMP was also active against a subset of MDRM. tuberculosisstrains. Treatment ofM. tuberculosiswith TMP-SMX and a first-line anti-TB drug, either isoniazid or rifampin, was bactericidal, demonstrating that the combination of TMP and SMX with isoniazid or rifampin was not antagonistic. Moreover, the addition of SMX-TMP in combination with either isoniazid or rifampin also prevented the emergence of drug resistancein vitro. In conclusion, this study further illustrates the opportunity to reevaluate the activity of TMP-SMXin vivoto prevent the emergence of drug-resistantM. tuberculosis.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13099-e13099
Author(s):  
Ji Ma ◽  
Hongwei Xia ◽  
Zhenhai Fan ◽  
Qiulin Tang ◽  
Tao Zhang ◽  
...  

e13099 Background: YAP and β-catenin play critical roles in the carcinogenesis of several cancers, but their functions in chemoresistance remain unclear in triple-negative breast cancer (TNBC). Herein, we examined the expression and function of the two proteins in the chemoresistance of TNBC. Methods: We examined the expression levels of YAP and β-catenin in TNBC samples by immunohistochemistry (IHC) and their roles in prognosis. Dynamic changes in the two proteins in TNBC tissues were determined by RT-PCR. CCK-8 assays, colony formation assays, flow cytometry, migration assays and nude mouse models were used to investigate the functions of YAP and β-catenin in drug-resistant TNBC cells. The involved signalling pathways were detected by western blot assays. Results: TNBC patients with high YAP and/or β-catenin expression had a higher risk of relapse or mortality than patients with low YAP and/or β-catenin expression, and changes in the expression of the two proteins might be a promising predictive biomarker for neoadjuvant chemotherapy sensitivity. Inhibition of YAP or β-catenin enhanced the cytotoxicity of the anti-microtubule agents docetaxel and vinorelbine against TNBC cells in vitro and in vivo. Moreover, YAP and β-catenin were upregulated in docetaxel- or vinorelbine-resistant TNBC cells, while inhibition of YAP or β-catenin enhanced the sensitivity of drug-resistant cells. Interestingly, aspirin, a kind of acetylsalicylic acid, reversed the drug resistance of cells and in combination with aspirin and docetaxel or vinorelbine significantly inhibited the growth of drug-resistant TNBC cells. The involved mechanism is that aspirin impaired YAP or β-catenin expression by upregulating the E3 ubiquitin ligase β-TrCP. Conclusions: Both YAP and β-catenin act as key biomarkers of prognosis and anti-microtubule drug resistance in TNBC, and the combined use of aspirin and anti-microtubule drugs inhibits YAP and β-catenin, presenting several promising therapeutic approaches for TNBC treatment.


Sign in / Sign up

Export Citation Format

Share Document