scholarly journals Virus-associated organosulfur metabolism in human and environmental systems

2021 ◽  
Author(s):  
Kristopher Kieft ◽  
Adam M. Breister ◽  
Phil Huss ◽  
Alexandra M. Linz ◽  
Elizabeth Zanetakos ◽  
...  

SummaryViruses influence the fate of nutrients and human health by killing microorganisms and altering metabolic processes. Organosulfur metabolism and biologically-derived hydrogen sulfide play dynamic roles in manifestation of diseases, infrastructure degradation, and essential biological processes. While microbial organosulfur metabolism is well-studied, the role of viruses in organosulfur metabolism is unknown. Here we report the discovery of 39 gene families involved in organosulfur metabolism encoded by 3,749 viruses from diverse ecosystems, including human microbiomes. The viruses infect organisms from all three domains of life. Six gene families encode for enzymes that degrade organosulfur compounds into sulfide, while others manipulate organosulfur compounds and may influence sulfide production. We show that viral metabolic genes encode key enzymatic domains, are translated into protein, are maintained after recombination, and that sulfide provides a fitness advantage to viruses. Our results reveal viruses as drivers of organosulfur metabolism with important implications for human and environmental health.

Open Medicine ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. 409-419 ◽  
Author(s):  
Muhammad Manwar Hussain ◽  
Mukhtarul Hassan ◽  
Noor Shaik ◽  
Zeeshan Iqbal

AbstractAccording to the universal biological findings, cellular bodies are covered with an intense coating of glycans. Diversity of glycan chains, linked to lipids and proteins is due to isomeric and conformational modifications of various sugar residues, giving rise to unique carbohydrate structures with a wide range of sequences and anomeric configurations. Proteins and lipids, carrying specific sugar residues (like Galactose) with particular stereochemical properties (sequence, anomery and linkages) are involved in broad spectrums of biological processes, including intercellular and intracellular interactions, microbial adhesion and cellular signaling. By studying the role of specific seterochemical features of galactose (Gal), we have improved our understanding about the normal physiology and diseases in human bodies.


2010 ◽  
Vol 35 (5) ◽  
pp. 402-407 ◽  
Author(s):  
Sunny E. Ohia ◽  
Catherine A. Opere ◽  
Emmanuel M. Monjok ◽  
Ghislaine Kouamou ◽  
Angela M. Leday ◽  
...  

CORROSION ◽  
1960 ◽  
Vol 16 (6) ◽  
pp. 298t-300t ◽  
Author(s):  
L. L. WOLFSON

Abstract A general discussion is given of the role of microorganisms in secondary recovery systems, including the interrelationship of the organisms with chemical scale and corrosion. Specific types of microorganisms discussed include iron bacteria, algae and fungi, slime formers, and corrosive (sulfate reducing) bacteria. The life cycles and nutritional requirements of the organisms are discussed, with emphasis on the effects of the different types of bacteria on each other. A genus of organisms, capable of hydrogen sulfide production, and previously not implicated in secondary recovery problems, is presented and described. 3.3.4


2013 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Noar Muda Satyawan ◽  
Shelly Tutupoho ◽  
Yusli Wardiatno ◽  
Makoto Tsuchiya

Erosion rate on corals due to activities of other biota is called bioerosion. The rock-boring urchin, Echinometra mathaei, when it is abundant, plays a significant role in benthic ecosystems, including biological processes like coral erosion. During feeding, E. mathaei erodes calcium carbonate besides grazing on algae living on coral, so it plays an important role in both organic and inorganic carbons in coral reefs. The urchin E. mathaei actively feeds during the night time (nocturnal grazer). Although in Okinawa four types (A-D) of the urchin exist, the research only focused on the types A and B. Type A of E. mathaei produced 0.44951 g feces per day on average while type B produced 0.38030 g feces per day. CaCO3 analysis in feces and gut contents showed bioerosion rate of E. mathaei type A was 0.64492 g/individu/day, and 0.54436 g/individu/day in type B. There were no significant differences in bioerosion impact of E. mathaei type A and B© Laju erosi pada karang yang disebabkan oleh biota, dikenal dengan bioerosi. Bulu babi jenis Echinometra mathaei, ketika melimpah, menjadi sangat berpengaruh terhadap ekosistem bentik termasuk proses biologi seperti erosi karang. Selama aktivitas makan, E. mathaei menggerus kalsium karbonat dalam proporsi yang besar di samping alga yang tumbuh menempel pada karang sehingga memiliki peran penting dalam siklus karbon organik dan anorganik di ekosistem terumbu karang. Bulu babi E. mathaei aktif mencari makan pada malam hari (nocturnal grazer). Meskipun di Okinanawa ada 4 tipe (A-D), pada eksperimen kali ini memfokuskan pada tipe A dan B saja. Tipe A E. mathaei rata-rata memproduksi 0,44951 g feses/hari dan tipe B memproduksi 0,38030 g feses/hari. Berdasarkan analisis CaCO3 yang dilakukan pada feses dan isi lambung, laju bioerosi yang disebabkan oleh E. mathaei tipe A sebesar 0,64492 g/individu/hari sedangkan tipe B sebesar 0,54436 g/individu/hari. Tidak terdapat perbedaan dampak bioerosi yang signifikan antara E. mathaei tipe A dan B©


2020 ◽  
Vol 19 (2) ◽  
pp. 139-145
Author(s):  
Sheena Chhabra ◽  
Apurva Bakshi ◽  
Ravineet Kaur

Nutraceuticals have been around for quite some time. As the nomenclature suggests, they are placed somewhere between food (nutra-) and medicine (-ceuticals) in terms of their impact on human health. Researches have focused on the impact of various types of nutraceuticals on health, their efficacy in health promotion and disease prevention, and often on suitable uses of certain categories of nutraceuticals for specific health issues. However, we are still far from utilizing the immense potential of nutraceuticals for benefiting human health in a substantial manner. We review the available scholarly literature regarding the role of nutraceuticals in health promotion, their efficacy in disease prevention and the perception of nutraceuticals' health benefits by consumers. Thereafter we analyze the need for regulation of nutraceuticals and various provisions regarding the same.


Author(s):  
Xiao Zhou ◽  
Xiao-Fei Zhang ◽  
Dong-Yan Guo ◽  
Yan-Jun Yang ◽  
Lin Liu ◽  
...  

Objective: Lingzhu San (LZS) is a traditional Chinese medicine (TCM) prescription which can be effective in treating febrile seizures (FS) and has few researches on the mechanisms. In order to better guide the clinical use of LZS, we used the research ideas and methods of network pharmacology to find the potential core compounds, targets and pathways of LZS in the complex TCM system for the treatment of FS, and predict the mechanism. Materials and Methods: Databases such as BATMAN, TCMSP, TCMID, and SWISS TARGET are used to mine the active compounds and targets of LZS, and the target information of FS was obtained through GENECARDS and OMIM. Using Venny2.1.0 and Cytoscape software to locked the potential core compounds and targets of FS. The R language and ClusterProfiler software package were adopt to enrich and analyze the KEGG and GO pathways of the core targets and the biological processes and potential mechanisms of the core targets were revealed. Results: 187 active compounds and 2113 target proteins of LZS were collected. And 38 potential core compounds, 35 core targets and 775 metabolic and functional pathways were screened which involved in mediating FS. Finally, the role of the core compounds, targets and pivotal pathways of LZS regulated FS in the pathogenesis and therapeutic mechanism of FS was discussed and clarified. Conclusions: In this paper, the multi-compounds, multi-targets and multi-pathways mechanism of LZS in the treatment of FS was preliminarily revealed through the analysis of network pharmacology data, which is consistent with the principle of multi-compounds compatibility of TCM prescriptions and unified treatment of diseases from multiple angles, and it provides a new way for TCM to treat complex diseases caused by multiple factors.


2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


Sign in / Sign up

Export Citation Format

Share Document