scholarly journals Proteomic interrogation of the pathogen-host interface in cholera

2021 ◽  
Author(s):  
Abdelrahim Zoued ◽  
Hailong Zhang ◽  
Ting Zhang ◽  
Rachel T. Giorgio ◽  
Carole J. Kuehl ◽  
...  

SummaryThe microbial cell surface is a critical site of microbe-host interactions that often control infection outcomes. Here, using the infant rabbit model of cholera, which provides an abundant source of in vivo Vibrio cholerae cells and diarrheal fluid, we investigated the proteomic composition of this interface. Bulk diarrheal fluid proteomes revealed that cholera toxin accounts for the vast majority of the host proteins present during infection. We developed a surface biotinylation protocol to purify and quantify both bacterial and host proteins present on the surface of diarrheal fluid-derived V. cholerae. We found that SP-D, a toxin-dependent host protein that directly binds the V. cholerae surface, is a novel intestinal defense factor. Other V. cholerae-bound host proteins also bound distinct taxa of the murine intestinal microbiota. Proteomic investigation of the microbial surface-host interface should be a valuable tool for probing microbe-host interactions and their influence on homeostasis and infection.

2021 ◽  
Author(s):  
Sarah V Barrass ◽  
Lauri I A Pulkkinen ◽  
Olli Vapalahti ◽  
Suvi Kuivanen ◽  
Maria Anastasina ◽  
...  

Virus-host protein-protein interactions are central to viral infection, but are challenging to identify and characterise, especially in complex systems involving intact viruses and cells. In this work, we demonstrate a proteome-wide approach to identify virus-host interactions using chemical cross-linking coupled with mass spectrometry. We adsorbed tick-borne encephalitis virus onto metabolically-stalled neuroblastoma cells, covalently cross-linked interacting virus-host proteins, and performed limited proteolysis to release primarily the surface-exposed proteins for identification by mass spectrometry. Using the intraviral protein cross-links as an internal control to assess cross-link confidence levels, we identified 22 high confidence unique intraviral cross-links and 59 high confidence unique virus-host protein-protein interactions. The identified host proteins were shown to interact with eight distinct sites on the outer surface of the virus. Notably, we identified an interaction between the substrate-binding domain of heat shock protein family A member 5, an entry receptor for four related flaviviruses, and the hinge region of the viral envelope protein. We also identified host proteins involved in endocytosis, cytoskeletal rearrangement, or located in the cytoskeleton, suggesting that entry mechanisms for tick-borne encephalitis virus could include both clathrin-mediated endocytosis and macropinocytosis. Additionally, cross-linking of the viral proteins showed that the capsid protein forms dimers within tick-borne encephalitis virus, as previously observed with purified C proteins for other flaviviruses. This method enables the identification and mapping of transient virus-host interactions, under near-physiological conditions, without the need for genetic manipulation.


2018 ◽  
Author(s):  
Helen Victoria Cook ◽  
Nadezhda Tsankova ◽  
Damian Szklarczyk ◽  
Christian von Mering ◽  
Lars Juhl Jensen

AbstractAs viruses continue to pose risks to global health, having a better un-derstanding of virus–host protein–protein interactions aids in the development of treatments and vaccines. Here, we introduce Viruses.STRING, a protein–protein interaction database specifically catering to virus-virus and virus-host interactions. This database combines evidence from experimental and text-mining channels to provide combined probabilities for interactions between viral and host proteins. The database contains 177,425 interactions between 239 viruses and 319 hosts. The database is publicly available at viruses.string-db.org, and the interaction data can also be accessed through the latest version of the Cytoscape STRING app.


Viruses ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 519 ◽  
Author(s):  
Helen Cook ◽  
Nadezhda Doncheva ◽  
Damian Szklarczyk ◽  
Christian von Mering ◽  
Lars Jensen

As viruses continue to pose risks to global health, having a better understanding of virus–host protein–protein interactions aids in the development of treatments and vaccines. Here, we introduce Viruses.STRING, a protein–protein interaction database specifically catering to virus–virus and virus–host interactions. This database combines evidence from experimental and text-mining channels to provide combined probabilities for interactions between viral and host proteins. The database contains 177,425 interactions between 239 viruses and 319 hosts. The database is publicly available at viruses.string-db.org, and the interaction data can also be accessed through the latest version of the Cytoscape STRING app.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rachel Knoener ◽  
Edward Evans ◽  
Jordan T Becker ◽  
Mark Scalf ◽  
Bayleigh Benner ◽  
...  

HIV-1 generates unspliced (US), partially spliced (PS), and completely spliced (CS) classes of RNAs, each playing distinct roles in viral replication. Elucidating their host protein ‘interactomes’ is crucial to understanding virus-host interplay. Here, we present HyPR-MSSV for isolation of US, PS, and CS transcripts from a single population of infected CD4+ T-cells and mass spectrometric identification of their in vivo protein interactomes. Analysis revealed 212 proteins differentially associated with the unique RNA classes, including preferential association of regulators of RNA stability with US and PS transcripts and, unexpectedly, mitochondria-linked proteins with US transcripts. Remarkably, >80 of these factors screened by siRNA knockdown impacted HIV-1 gene expression. Fluorescence microscopy confirmed several to co-localize with HIV-1 US RNA and exhibit changes in abundance and/or localization over the course of infection. This study validates HyPR-MSSV for discovery of viral splice variant protein interactomes and provides an unprecedented resource of factors and pathways likely important to HIV-1 replication.


1982 ◽  
Vol 47 (03) ◽  
pp. 269-274 ◽  
Author(s):  
R A G Smith ◽  
R J Dupe ◽  
P D English ◽  
J Green

SummaryA derivative of human lys-plasmin in which the active site has been reversibly acylated (BRL 26920; p-anisoyl human lys-plasmin) has been examined as a fibrinolytic agent in a previously described rabbit model of venous thrombosis and shown to be significantly more active and less fibrinogenolytic than free plasmin. A p-anisoylated derivative of a streptokinase (SK)-activated plasmin preparation was significantly less fibrinogenolytic in vivo than the non-acylated enzyme. Acylation increased the fibrinolytic activity of preparations of SK-plasmin activator complexes. BRL 26921, the active site anisoylated derivative of the primary 2-chain SK-plasminogen complex was the most potent fibrinolytic agent studied. SK-Val442-plasminogen complexes, free or acylated, were biologically inactive in this model and confirm the essential nature of fibrin binding processes for effective thrombolysis in vivo.


1970 ◽  
Vol 24 (1) ◽  
pp. 38-41
Author(s):  
Taslima Taher Lina ◽  
Mohammad Ilias

The in vivo production of soluble inorganic pyrophosphatases (PPases) was investigated in two strains, namely, Vibrio cholerae EM 004 (environmental strain) and Vibrio cholerae O1 757 (ATCC strain). V. cholerae is known to contain both family I and family II PPase coding sequences. The production of family I and family II PPases were determined by measuring the enzyme activity in cell extracts. The effects of pH, temperature, salinity of the growth medium on the production of soluble PPases were studied. In case of family I PPase, V. cholerae EM 004 gave the highest specific activity at pH 9.0, with 2% NaCl + 0.011% NaF and at 37°C. The strain V. cholerae O1 757 gave the highest specific activity at pH 9.0, with media containing 0% NaCl and at 37°C. On the other hand, under all the conditions family II PPase did not give any significant specific activity, suggesting that the family II PPase was not produced in vivo in either strains of V. cholerae under different experimental conditions. Keywords: Vibrio cholerae, Pyrophosphatases (PPases), Specific activityDOI: http://dx.doi.org/10.3329/bjm.v24i1.1235 Bangladesh J Microbiol, Volume 24, Number 1, June 2007, pp 38-41


PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0236348
Author(s):  
Naila Cannes do Nascimento ◽  
Andrea P. dos Santos ◽  
M. Preeti Sivasankar ◽  
Abigail Cox
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karen E. Beenken ◽  
Mara J. Campbell ◽  
Aura M. Ramirez ◽  
Karrar Alghazali ◽  
Christopher M. Walker ◽  
...  

AbstractWe previously reported the development of an osteogenic bone filler scaffold consisting of degradable polyurethane, hydroxyapatite, and decellularized bovine bone particles. The current study was aimed at evaluating the use of this scaffold as a means of local antibiotic delivery to prevent infection in a bone defect contaminated with Staphylococcus aureus. We evaluated two scaffold formulations with the same component ratios but differing overall porosity and surface area. Studies with vancomycin, daptomycin, and gentamicin confirmed that antibiotic uptake was concentration dependent and that increased porosity correlated with increased uptake and prolonged antibiotic release. We also demonstrate that vancomycin can be passively loaded into either formulation in sufficient concentration to prevent infection in a rabbit model of a contaminated segmental bone defect. Moreover, even in those few cases in which complete eradication was not achieved, the number of viable bacteria in the bone was significantly reduced by treatment and there was no radiographic evidence of osteomyelitis. Radiographs and microcomputed tomography (µCT) analysis from the in vivo studies also suggested that the addition of vancomycin did not have any significant effect on the scaffold itself. These results demonstrate the potential utility of our bone regeneration scaffold for local antibiotic delivery to prevent infection in contaminated bone defects.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


Sign in / Sign up

Export Citation Format

Share Document