scholarly journals Expression of Chlamydomonas reinhardtii chloroplast diacylglycerol acyltransferase-3 is activated by light in concert with triacylglycerol accumulation

2021 ◽  
Author(s):  
María de las Mercedes Carro ◽  
Débora Soto ◽  
Leandro Mamone ◽  
Gabriela Gonorazky ◽  
Carolina Bagnato ◽  
...  

AbstractConsiderable progress has been made towards the understanding of triacylglycerol (TAG) accumulation in algae. One key aspect is finding conditions that trigger TAG production without reducing cell division. Previously, we identified a soluble diacylglycerol acyltransferase (DGAT), related to plant DGAT3, with heterologous DGAT activity. In this work, we demonstrate that Chlamydomonas reinhardtii DGAT3 localizes to the chloroplast and its expression is activated by light, in correspondence with TAG accumulation. Dgat3 mRNAs and TAGs increased in both wild type and starch-deficient cells grown with acetate upon transferring them from dark or low light to higher light. Light-activated DGAT3 expression and TAG accumulation depended on the preexisting levels of TAGs, suggesting the existence of a regulatory loop. These results indicate that DGAT3 could be responsible, at least in part, for light-dependent TAG accumulation. Moreover, our results present DGAT3 as a promising target of future studies oriented to the industrial applications of TAGs.

Genetics ◽  
1988 ◽  
Vol 120 (4) ◽  
pp. 965-976 ◽  
Author(s):  
S K Dutcher ◽  
W Gibbons ◽  
W B Inwood

Abstract A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 150
Author(s):  
Kimberly J. Nelson ◽  
Terri Messier ◽  
Stephanie Milczarek ◽  
Alexis Saaman ◽  
Stacie Beuschel ◽  
...  

A central hallmark of tumorigenesis is metabolic alterations that increase mitochondrial reactive oxygen species (mROS). In response, cancer cells upregulate their antioxidant capacity and redox-responsive signaling pathways. A promising chemotherapeutic approach is to increase ROS to levels incompatible with tumor cell survival. Mitochondrial peroxiredoxin 3 (PRX3) plays a significant role in detoxifying hydrogen peroxide (H2O2). PRX3 is a molecular target of thiostrepton (TS), a natural product and FDA-approved antibiotic. TS inactivates PRX3 by covalently adducting its two catalytic cysteine residues and crosslinking the homodimer. Using cellular models of malignant mesothelioma, we show here that PRX3 expression and mROS levels in cells correlate with sensitivity to TS and that TS reacts selectively with PRX3 relative to other PRX isoforms. Using recombinant PRXs 1–5, we demonstrate that TS preferentially reacts with a reduced thiolate in the PRX3 dimer at mitochondrial pH. We also show that partially oxidized PRX3 fully dissociates to dimers, while partially oxidized PRX1 and PRX2 remain largely decameric. The ability of TS to react with engineered dimers of PRX1 and PRX2 at mitochondrial pH, but inefficiently with wild-type decameric protein at cytoplasmic pH, supports a novel mechanism of action and explains the specificity of TS for PRX3. Thus, the unique structure and propensity of PRX3 to form dimers contribute to its increased sensitivity to TS-mediated inactivation, making PRX3 a promising target for prooxidant cancer therapy.


2020 ◽  
Vol 4 (11) ◽  
Author(s):  
Katherine M Ranard ◽  
Matthew J Kuchan ◽  
John W Erdman

ABSTRACT Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)–null (Ttpa−/−) mouse model. Ttpa+/− dams can be used to produce Ttpa−/− and Ttpa+/+mice for these studies. However, the α-T content in Ttpa+/− dams’ diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa−/− mice for neurological studies.


2021 ◽  
Vol 7 (7) ◽  
pp. eabe6855 ◽  
Author(s):  
Carolina Beltrán-Pavez ◽  
Sebastián Riquelme-Barrios ◽  
Aarón Oyarzún-Arrau ◽  
Aracelly Gaete-Argel ◽  
Roxana González-Stegmaier ◽  
...  

Chile has one of the worst numbers worldwide in terms of SARS-CoV-2 positive cases and COVID-19–related deaths per million inhabitants; thus, characterization of neutralizing antibody (NAb) responses in the general population is critical to understanding of immunity at the local level. Given our inability to perform massive classical neutralization assays due to the scarce availability of BSL-3 facilities in the country, we developed and fully characterized an HIV-based SARS-CoV-2 pseudotype, which was used in a 96-well plate format to investigate NAb responses in samples from individuals exposed to SARS-CoV-2 or treated with convalescent plasma. We also identified samples with decreased or enhanced neutralization activity against the D614G spike variant compared with the wild type, indicating the relevance of this variant in host immunity. The data presented here represent the first insights into NAb responses in individuals from Chile, serving as a guide for future studies in the country.


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1345-1353
Author(s):  
Amber K Bowers ◽  
Jennifer A Keller ◽  
Susan K Dutcher

Abstract To take advantage of available expressed sequence tags and genomic sequence, we have developed 64 PCR-based molecular markers in Chlamydomonas reinhardtii that map to the 17 linkage groups. These markers will allow the rapid association of a candidate gene sequence with previously identified mutations. As proof of principle, we have identified the genes encoded by the ERY1 and ERY2 loci. Mendelian mutations that confer resistance to erythromycin define three unlinked nuclear loci in C. reinhardtii. Candidate genes ribosomal protein L4 (RPL4) and L22 (RPL22) are tightly linked to the ERY1 locus and ERY2 locus, respectively. Genomic DNA for RPL4 from wild type and five mutant ery1 alleles was amplified and sequenced and three different point mutations were found. Two different glycine residues (G102 and G112) are replaced by aspartic acid and both are in the unstructured region of RPL4 that lines the peptide exit tunnel of the chloroplast ribosome. The other two alleles change a splice site acceptor site. Genomic DNA for RPL22 from wild type and three mutant ery2 alleles was amplified and sequenced and revealed three different point mutations. Two alleles have premature stop codons and one allele changes a splice site acceptor site.


2001 ◽  
Vol 359 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Valeria MENCHISE ◽  
Catherine CORBIER ◽  
Claude DIDIERJEAN ◽  
Michele SAVIANO ◽  
Ettore BENEDETTI ◽  
...  

Thioredoxins are ubiquitous proteins which catalyse the reduction of disulphide bridges on target proteins. The catalytic mechanism proceeds via a mixed disulphide intermediate whose breakdown should be enhanced by the involvement of a conserved buried residue, Asp-30, as a base catalyst towards residue Cys-39. We report here the crystal structure of wild-type and D30A mutant thioredoxin h from Chlamydomonas reinhardtii, which constitutes the first crystal structure of a cytosolic thioredoxin isolated from a eukaryotic plant organism. The role of residue Asp-30 in catalysis has been revisited since the distance between the carboxylate OD1 of Asp-30 and the sulphur SG of Cys-39 is too great to support the hypothesis of direct proton transfer. A careful analysis of all available crystal structures reveals that the relative positioning of residues Asp-30 and Cys-39 as well as hydrophobic contacts in the vicinity of residue Asp-30 do not allow a conformational change sufficient to bring the two residues close enough for a direct proton transfer. This suggests that protonation/deprotonation of Cys-39 should be mediated by a water molecule. Molecular-dynamics simulations, carried out either in vacuo or in water, as well as proton-inventory experiments, support this hypothesis. The results are discussed with respect to biochemical and structural data.


1993 ◽  
Vol 106 (1) ◽  
pp. 209-218 ◽  
Author(s):  
S.W. James ◽  
C.D. Silflow ◽  
P. Stroom ◽  
P.A. Lefebvre

A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii was isolated by using the amiprophos-methyl-resistant mutation apm1-18 as a background to select new mutants that showed increased resistance to the drug. The upA12 mutation caused twofold resistance to amiprophos-methyl and oryzalin, and twofold hypersensitivity to the microtubule-stabilizing drug taxol, suggesting that the mutation enhanced microtubule stability. The resistance mutation was semi-dominant and mapped to the same interval on linkage group III as the alpha 1-tubulin gene. Two-dimensional gel immunoblots of proteins in the mutant cells revealed two electrophoretically altered alpha-tubulin isoforms, one of which was acetylated and incorporated into microtubules in the axoneme. The mutant isoforms co-segregated with the drug-resistance phenotypes when mutant upA12 was backcrossed to wild-type cells. Two-dimensional gel analysis of in vitro translation products showed that the non-acetylated variant alpha-tubulin was a primary gene product. DNA sequence analysis of the alpha 1-tubulin genes from mutant and wild-type cells revealed a single missense mutation, which predicted a change in codon 24 from tyrosine in wild type to histidine in mutant upA12. This alteration in the predicted amino acid sequence corroborated the approximately +1 basic charge shift observed for the variant alpha-tubulins. The mutant allele of the alpha 1-tubulin gene was designated tua1-1.


2018 ◽  
Vol 75 (6) ◽  
pp. 1042-1049
Author(s):  
Seongjoon Park ◽  
Erkhembayar Nayantai ◽  
Toshimitsu Komatsu ◽  
Hiroko Hayashi ◽  
Ryoichi Mori ◽  
...  

Abstract The orexigenic hormone neuropeptide Y (NPY) plays a pivotal role in the peripheral regulation of fat metabolism. However, the mechanisms underlying the effects of sex on NPY function have not been extensively analyzed. In this study, we examined the effects of NPY deficiency on fat metabolism in male and female mice. Body weight was slightly decreased, whereas white adipose tissue (WAT) mass was significantly decreased as the thermogenic program was upregulated in NPY-/- female mice compared with that in wild-type mice; these factors were not altered in response to NPY deficiency in male mice. Moreover, lack of NPY resulted in an increase in luteinizing hormone (LH) expression in the pituitary gland, with concomitant activation of the estradiol-mediated thermogenic program in inguinal WAT, and alleviated age-related modification of adiposity in female mice. Taken together, these data revealed a novel intracellular mechanism of NPY in the regulation of fat metabolism and highlighted the sexual dimorphism of NPY as a promising target for drug development to reduce postmenopausal adiposity.


2020 ◽  
Vol 24 (1) ◽  
pp. 87-93
Author(s):  
Putu Eka Widyadharma ◽  
Aurelia Vania ◽  
Jimmy FA Barus ◽  
Yudiyanta . ◽  
Thomas Eko Purwata

Neuropathic pain (NP) is a result of direct disturbances of somatosensory pathways. Its pathophysiology includes various mechanisms. Recent studies have reported an important role of microglia in the NP mechanism. There are several chemical molecules which are involved in microglia activation. The activated microglia will, in turn, enhance some receptors expression that can be used as markers of its activation. Though we still need future studies about precise microglia role in NP mechanism, the chemical mediators that initiate microglia activation and the alteration of some receptors in the activated microglia which have been found from previous studies can be the interesting future research materials and the promising target for a new therapy for NP. Citation: Widyadharma PE, Vania A, Barus JFA, Yudiyanta, Purwata TE. Biomarkers for microglia activation in neuropathic pain. Anaesth pain intensive care 2020;24(1):___ DOI: https://doi.org/10.35975/apic.v24i1. Received – 12 June 2019, Reviewed – 15 September 2019, 29 February 2020, Accepted – 2 March 2020;


Sign in / Sign up

Export Citation Format

Share Document