scholarly journals Molecular and cellular insight into Escherichia coli SslE and its role during biofilm maturation

2021 ◽  
Author(s):  
Paula Corsini ◽  
Sunjun Wang ◽  
Saima Rehman ◽  
Katherine Fenn ◽  
Amin Sagar ◽  
...  

Abstract Escherichia coli is a Gram-negative bacterium that colonizes the human intestine and virulent strains can cause severe diarrhoeal and extraintestinal diseases. The protein SslE is secreted by a range of pathogenic and some commensal E. coli strains. It can degrade mucins in the intestine, promotes biofilm maturation and in virulent strains, it is a major determinant of infection, although how it carries out these functions is not well understood. Here we examine SslE from the E. coli Waksman and H10407 strains and show that SslE has a highly dynamic structure in solution. We directly observe acidification within mature biofilms, describe a mechanism where SslE forms unique functional fibres under these conditions and determine that these SslE aggregates can bind cellulose, a major exopolysaccharide of many E. coli biofilms. Our data indicates that the spatial organization of SslE polymers and local pH are critical for biofilm maturation and SslE is a key factor that drives persistence of SslE-secreting bacteria during acidic stress.

Genes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 34 ◽  
Author(s):  
Natalie Gugala ◽  
Kate Chatfield-Reed ◽  
Raymond J. Turner ◽  
Gordon Chua

The diagnostic and therapeutic agent gallium offers multiple clinical and commercial uses including the treatment of cancer and the localization of tumors, among others. Further, this metal has been proven to be an effective antimicrobial agent against a number of microbes. Despite the latter, the fundamental mechanisms of gallium action have yet to be fully identified and understood. To further the development of this antimicrobial, it is imperative that we understand the mechanisms by which gallium interacts with cells. As a result, we screened the Escherichia coli Keio mutant collection as a means of identifying the genes that are implicated in prolonged gallium toxicity or resistance and mapped their biological processes to their respective cellular system. We discovered that the deletion of genes functioning in response to oxidative stress, DNA or iron–sulfur cluster repair, and nucleotide biosynthesis were sensitive to gallium, while Ga resistance comprised of genes involved in iron/siderophore import, amino acid biosynthesis and cell envelope maintenance. Altogether, our explanations of these findings offer further insight into the mechanisms of gallium toxicity and resistance in E. coli.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 454 ◽  
Author(s):  
Imke H. E. Korf ◽  
Jan P. Meier-Kolthoff ◽  
Evelien M. Adriaenssens ◽  
Andrew M. Kropinski ◽  
Manfred Nimtz ◽  
...  

The aim of this study was to gain further insight into the diversity of Escherichia coli phages followed by enhanced work on taxonomic issues in that field. Therefore, we present the genomic characterization and taxonomic classification of 50 bacteriophages against E. coli isolated from various sources, such as manure or sewage. All phages were examined for their host range on a set of different E. coli strains, originating, e.g., from human diagnostic laboratories or poultry farms. Transmission electron microscopy revealed a diversity of morphotypes (70% Myo-, 22% Sipho-, and 8% Podoviruses), and genome sequencing resulted in genomes sizes from ~44 to ~370 kb. Annotation and comparison with databases showed similarities in particular to T4- and T5-like phages, but also to less-known groups. Though various phages against E. coli are already described in literature and databases, we still isolated phages that showed no or only few similarities to other phages, namely phages Goslar, PTXU04, and KWBSE43-6. Genome-based phylogeny and classification of the newly isolated phages using VICTOR resulted in the proposal of new genera and led to an enhanced taxonomic classification of E. coli phages.


2008 ◽  
Vol 74 (20) ◽  
pp. 6230-6238 ◽  
Author(s):  
Tamar Abuladze ◽  
Manrong Li ◽  
Marc Y. Menetrez ◽  
Timothy Dean ◽  
Andre Senecal ◽  
...  

ABSTRACT A bacteriophage cocktail (designated ECP-100) containing three Myoviridae phages lytic for Escherichia coli O157:H7 was examined for its ability to reduce experimental contamination of hard surfaces (glass coverslips and gypsum boards), tomato, spinach, broccoli, and ground beef by three virulent strains of the bacterium. The hard surfaces and foods contaminated by a mixture of three E. coli O157:H7 strains were treated with ECP-100 (test samples) or sterile phosphate-buffered saline buffer (control samples), and the efficacy of phage treatment was evaluated by comparing the number of viable E. coli organisms recovered from the test and control samples. Treatments (5 min) with the ECP-100 preparation containing three different concentrations of phages (1010, 109, and 108 PFU/ml) resulted in statistically significant reductions (P = <0.05) of 99.99%, 98%, and 94%, respectively, in the number of E. coli O157:H7 organisms recovered from the glass coverslips. Similar treatments resulted in reductions of 100%, 95%, and 85%, respectively, in the number of E. coli O157:H7 organisms recovered from the gypsum board surfaces; the reductions caused by the two most concentrated phage preparations were statistically significant. Treatment with the least concentrated preparation that elicited significantly less contamination of the hard surfaces (i.e., 109 PFU/ml) also significantly reduced the number of viable E. coli O157:H7 organisms on the four food samples. The observed reductions ranged from 94% (at 120 ± 4 h posttreatment of tomato samples) to 100% (at 24 ± 4 h posttreatment of spinach samples). The data suggest that naturally occurring bacteriophages may be useful for reducing contamination of various hard surfaces, fruits, vegetables, and ground beef by E. coli O157:H7.


1999 ◽  
Vol 62 (10) ◽  
pp. 1123-1127 ◽  
Author(s):  
SHANSHAN ZHANG ◽  
AZLIN MUSTAPHA

Nisin or nisin combined with EDTA was used to treat fresh beef. Beef cubes (2.5 by 2.5 by 2.5 cm) that were inoculated with approximately 7 log CFU/ml of Listeria monocytogenes Scott A or Escherichia coli O157:H7 505 B were dipped in the following solutions: (i) H2O, (ii) HCl, (iii) nisin, (iv) EDTA, or (v) nisin combined with EDTA, respectively, for 10 min each, with an exception of one set of control beef samples without treatment. Beef samples were then drip-dried for 15 min, vacuum packaged, and stored at 4°C for up to 30 days. The pH on beef after different treatments was not a key factor in preventing bacterial growth. Treatment with nisin or with nisin combined with EDTA reduced the population of L. monocytogenes by 2.01 and 0.99 log CFU/cm2 as compared to the control, respectively, under the conditions of vacuum package and storage at 4°C for up to 30 days. However, the effect of nisin and nisin combined with EDTA against E. coli O157:H7 505 B was marginal at 1.02 log CFU/cm2 and 0.8 log CFU/cm2 reductions, respectively.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Krithika Rajagopalan ◽  
Elizabeth Nagle ◽  
Jonathan Dworkin

Regulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria, including the model Gram-negative bacteriumEscherichia coli, demonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thr phosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


2019 ◽  
Vol 8 (38) ◽  
Author(s):  
Douglas Pechacek ◽  
Myung Hwangbo ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli 4s is a Gram-negative bacterium found in the equine intestinal ecosystem alongside diverse other coliform bacteria and bacteriophages. This announcement describes the complete genome of the T7-like E. coli 4s podophage Penshu1. From its 39,263-bp genome, 54 protein-encoding genes and a 179-bp terminal repeat were predicted.


2019 ◽  
Vol 8 (40) ◽  
Author(s):  
James E. Corban ◽  
Jacob Gramer ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli is a Gram-negative bacterium often found in animal intestinal tracts. Here, we present the genome of the Guernseyvirinae-like E. coli 4s siphophage Snoke. The 44.4-kb genome contains 81 protein-coding genes, for which 33 functions were predicted. The capsid morphogenesis gene in Snoke contains a large intein.


2021 ◽  
Author(s):  
Zhixin Lyu ◽  
Atsushi Yahashiri ◽  
Xinxing Yang ◽  
Joshua W McCausland ◽  
Gabriela M Kaus ◽  
...  

The FtsN protein of Escherichia coli and other proteobacteria is an essential and highly conserved bitopic membrane protein that triggers the inward synthesis of septal peptidoglycan (sPG) during cell division. Previous work has shown that the activation of sPG synthesis by FtsN involves a series of interactions of FtsN with other divisome proteins and the cell wall. Precisely how FtsN achieves this role is unclear, but a recent study has shown that FtsN promotes the relocation of the essential sPG synthase FtsWI from an FtsZ-associated track (where FtsWI is inactive) to an sPG-track (where FtsWI engages in sPG synthesis). Whether FtsN works by displacing FtsWI from the Z-track or capturing/retaining FtsWI on the sPG-track is not known. Here we use single-molecule imaging and genetic manipulation to investigate the organization and dynamics of FtsN at the septum and how they are coupled to sPG synthesis activity. We found that FtsN exhibits a spatial organization and dynamics distinct from those of the FtsZ-ring. Single FtsN molecules move processively as a single population with a speed of ~ 9 nm s-1, similar to the speed of active FtsWI molecules on the sPG-track, but significantly different from the ~ 30 nm s-1 speed of inactive FtsWI molecules on the FtsZ-track. Furthermore, the processive movement of FtsN is independent of FtsZ's treadmilling dynamics but driven exclusively by active sPG synthesis. Importantly, only the essential domain of FtsN, a three-helix bundle in the periplasm, is required to maintain the processive complex containing both FtsWI and FtsN on the sPG-track. We conclude that FtsN activates sPG synthesis by forming a processive synthesis complex with FtsWI exclusively on the sPG-track. These findings favor a model in which FtsN captures or retains FtsWI on the sPG-track rather than one in which FtsN actively displaces FtsWI from the Z-track.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6591 ◽  
Author(s):  
Jennifer A. Chase ◽  
Melissa L. Partyka ◽  
Ronald F. Bond ◽  
Edward R. Atwill

Field trials were conducted in July–August and October 2012 to quantify the inactivation rate of Escherichia coli O157:H7 when mixed with fecal slurry and applied to romaine lettuce leaves. Lettuce was grown under commercial conditions in Salinas Valley, California. One-half milliliter of rabbit, chicken, or pig fecal slurry, containing an average of 4.05 × 107 CFU E. coli O157:H7 (C0), was inoculated onto the upper (adaxial) surface of a lower leaf on 288 heads of lettuce per trial immediately following a 2.5 h irrigation event. To estimate the bacterial inactivation rate as a function of time, fecal matrix, irrigation and seasonal climate effects, sets of lettuce heads (n = 28) were sampled each day over 10 days and the concentration of E. coli O157:H7 (Ct) determined. E. coli O157:H7 was detected on 100% of heads during the 10-day duration, with concentrations ranging from ≤340 MPN/head (∼5-log reduction) to >3.45 × 1012 MPN/head (∼5-log growth). Relative to C0, on day 10 (Ct = 12) we observed an overall 2.6-log and 3.2-log mean reduction of E. coli O157:H7 in July and October, respectively. However, we observed relative maximum concentrations due to bacterial growth on day 6 (maximum Ct = 8) apparently stimulated by foliar irrigation on day 5. From this maximum there was a mean 5.3-log and 5.1-log reduction by day 10 (Ct = 12) for the July and October trials, respectively. This study provides insight into the inactivation and growth kinetics of E. coli O157:H7 on romaine lettuce leaves under natural field conditions. This study provides evidence that harvesting within 24 h post irrigation has the potential to increase the concentration of E. coli O157:H7 contamination, if present on heads of romaine lettuce; foliar irrigation can temporarily stimulate substantial regrowth of E. coli O157:H7.


2017 ◽  
Vol 80 (6) ◽  
pp. 990-993 ◽  
Author(s):  
Chloe Stenkamp-Strahm ◽  
Craig McConnel ◽  
Doreene R. Hyatt ◽  
Roberta Magnuson ◽  
Paige Tenneson ◽  
...  

ABSTRACT To gain insight into a potential age-related predisposition for Escherichia coli pathogen shedding on dairies, this pilot study measured the prevalence of E. coli O157 (ECO157) in the feces of preweaned dairy calves. An aim of this study was to link these outcomes with the concurrent environmental presence of ECO157 and dam ECO157 shedding elucidated in a parallel study. Recto-anal mucosal swabs and a subset of fecal grab samples were collected from calves (2 to 8 weeks of age; n = 399) monthly between December 2013 and June 2014 on three dairies in northern Colorado. A subset of calf dams (n = 111) were also sampled via fecal grab. Concurrently, environmental samples were collected from locations within the vicinity of the calves: farm tractor tires, steering wheels, hutches, buckets, and gloves from the research technicians and the employees involved in calf rearing. The presence of ECO157 and virulence genes was measured in the samples and confirmed via PCR. Of the calves, only 1 (0.25%) of 399 individuals shed during the time period, and the ECO157 strain detected carried no measured virulence genes (eaeA, stx1, and stx2). No difference was seen in detection between the recto-anal mucosal swabs and the fecal grab technique. In contrast, 32% (35 of 111) of the dams shed ECO157, with 1.8% (2 of 111) of the shed isolates containing virulence genes. No ECO157 was detected in the environmental samples. These outcomes demonstrate a disparity between dam and calf ECO157 shedding and indicate that preweaned calves, managed similarly to those of this study, probably have a minor influence on dairy contamination and the transmission of ECO157.


Sign in / Sign up

Export Citation Format

Share Document