scholarly journals Biophysical and proteomic analyses suggest functions of Pseudomonas syringae pv tomato DC3000 extracellular vesicles in bacterial growth during plant infection

2021 ◽  
Author(s):  
Martin Janda ◽  
Christina Ludwig ◽  
Katarzyna Rybak ◽  
Chen Meng ◽  
Egidio Stigliano ◽  
...  

SummaryVesiculation is a process employed by Gram-negative bacteria to release extracellular vesicles (EVs) into the environment. Bacterial EVs contain molecular cargo from the donor bacterium and play important roles in bacterial survival and growth. Here, we describe EV production in plant-pathogenic Pseudomonas syringae pv. tomato DC3000 (Pto DC3000), the causal agent of bacterial speck disease. Cultured Pto DC3000 exhibited EV structures both on the cell surface and in the vicinity of bacterial cells, observed as outer membrane vesicle (OMV) release. We used in-solution trypsin digestion coupled to mass spectrometry to identify 369 proteins enriched in EVs recovered from cultured Pto DC3000. The predicted localization profile of EV proteins supports the production of EVs also in the form of outer-inner-membrane vesicles (OIMVs). EV production varied slightly between bacterial lifestyles and also occurred in planta. The potential contribution of EVs to Pto DC3000 plant infection was assessed using plant treatments and bioinformatic analysis of the EV-enriched proteins. While these results identify immunogenic activities of the EVs, they also point at roles for EVs in bacterial defences and nutrient acquisition by Pto DC3000.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Vladislav M. Chernov ◽  
Olga A. Chernova ◽  
Alexey A. Mouzykantov ◽  
Natalija B. Baranova ◽  
Oleg V. Gorshkov ◽  
...  

For the first time, the phytopathogenicity of extracellular vesicles ofAcholeplasma laidlawiiPG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses) inOryza sativaL. plants was studied. Data on the ability of extracellular vesicles ofAcholeplasma laidlawiiPG8 to penetrate from the nutrient medium into overground parts ofOryza sativaL. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium withA. laidlawiiPG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles ofAcholeplasma laidlawiiPG8 allowed a possibility to use PCR (with the following sequencing) to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218815 ◽  
Author(s):  
Saray Santamaría-Hernando ◽  
Marta Senovilla ◽  
Almudena González-Mula ◽  
Pedro Manuel Martínez-García ◽  
Sandra Nebreda ◽  
...  

2020 ◽  
Author(s):  
Hannah M. McMillan ◽  
Sophia G. Zebell ◽  
Jean B. Ristaino ◽  
Xinnian Dong ◽  
Meta J. Kuehn

SummaryBacterial outer membrane vesicles (OMVs) perform a variety of functions in bacterial survival and virulence. In mammalian systems, OMVs activate immune responses and have been exploited as vaccines. However, little work has focused on the role that OMVs play during interactions with plant hosts. Here we report that OMVs from the pathogenic Pseudomonas syringae and the beneficial Pseudomonas fluorescens activate plant immune responses that protect against bacterial and oomycete pathogens. OMVs from these two species display different sensitivity to biochemical stressors, which could indicate differences in OMV cargo packaging. Furthermore, our study shows that OMV-induced protective immune responses are T3SS- and protein-independent, while OMV-mediated seedling growth inhibition largely depends on protein cargo. Importantly, OMV-mediated plant responses are distinct from those triggered by PAMP/MAMPs or effector molecules alone. OMVs provide a unique opportunity to study virulence factors in combination and add a new layer of interaction and complexity to host-microbe interactions.


2010 ◽  
Vol 23 (10) ◽  
pp. 1294-1302 ◽  
Author(s):  
S. A. C. Godfrey ◽  
J. W. Mansfield ◽  
D. S. Corry ◽  
H. C. Lovell ◽  
R. W. Jackson ◽  
...  

Pseudomonas syringae pv. phaseolicola is the seed borne causative agent of halo blight in the common bean Phaseolus vulgaris. Pseudomonas syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene hopAR1 (located on a 106-kb genomic island, PPHGI-1, and earlier named avrPphB), which matches resistance gene R3 in P. vulgaris cultivar Tendergreen (TG) and causes a rapid hypersensitive reaction (HR). Here, we have fluorescently labeled selected Pseudomonas syringae pv. phaseolicola 1302A and 1448A strains (with and without PPHGI-1) to enable confocal imaging of in-planta colony formation within the apoplast of resistant (TG) and susceptible (Canadian Wonder [CW]) P. vulgaris leaves. Temporal quantification of fluorescent Pseudomonas syringae pv. phaseolicola colony development correlated with in-planta bacterial multiplication (measured as CFU/ml) and is, therefore, an effective means of monitoring Pseudomonas syringae pv. phaseolicola endophytic colonization and survival in P. vulgaris. We present advances in the application of confocal microscopy for in-planta visualization of Pseudomonas syringae pv. phaseolicola colony development in the leaf mesophyll to show how the HR defense response greatly affects colony morphology and bacterial survival. Unexpectedly, the presence of PPHGI-1 was found to cause a reduction of colony development in susceptible P. vulgaris CW leaf tissue. We discuss the evolutionary consequences that the acquisition and retention of PPHGI-1 brings to Pseudomonas syringae pv. phaseolicola in planta.


Microbiology ◽  
2003 ◽  
Vol 149 (5) ◽  
pp. 1127-1138 ◽  
Author(s):  
Ronald C. Keith ◽  
Lisa M. W. Keith ◽  
Gustavo Hernández-Guzmán ◽  
Srinivasa R. Uppalapati ◽  
Carol L. Bender

Pseudomonas syringae produces the exopolysaccharide alginate, a copolymer of mannuronic and guluronic acid. Although alginate has been isolated from plants infected by P. syringae, the signals and timing of alginate gene expression in planta have not been described. In this study, an algD : : uidA transcriptional fusion, designated pDCalgDP, was constructed and used to monitor alginate gene expression in host and non-host plants inoculated with P. syringae pv. tomato DC3000. When leaves of susceptible collard plants were spray-inoculated with DC3000(pDCalgDP), algD was activated within 72 h post-inoculation (p.i.) and was associated with the development of water-soaked lesions. In leaves of the susceptible tomato cv. Rio Grande-PtoS, algD activity was lower than in collard and was not associated with water-soaking. The expression of algD was also monitored in leaves of tomato cv. Rio Grande-PtoR, which is resistant to P. syringae pv. tomato DC3000. Within 12 h p.i., a microscopic hypersensitive response (micro-HR) was observed in Rio Grande-PtoR leaves spray-inoculated with P. syringae pv. tomato DC3000(pDCalgDP). As the HR progressed, histochemical staining indicated that individual bacterial cells on the surface of resistant tomato leaves were expressing algD. These results indicate that algD is expressed in both susceptible (e.g. collard, tomato) and resistant (Rio Grande-PtoR) host plants. The expression of algD in an incompatible host–pathogen interaction was further explored by monitoring transcriptional activity in leaves of tobacco, which is not a host for P. syringae pv. tomato. In tobacco inoculated with DC3000(pDCalgDP), an HR was evident within 12 h p.i., and algD expression was evident within 8-12 h p.i. However, when tobacco was inoculated with an hrcC mutant of DC3000, the HR did not occur and algD expression was substantially lower. These results suggest that signals that precede the HR may stimulate alginate gene expression in P. syringae. Histochemical staining with nitro blue tetrazolium indicated that the superoxide anion () is a signal for algD activation in planta. This study indicates that algD is expressed when P. syringae attempts to colonize both susceptible and resistant plant hosts.


2022 ◽  
Author(s):  
Lina Xiong ◽  
Mingchen Xia ◽  
Qinglin Wang ◽  
Zhen Meng ◽  
Jie Zhang ◽  
...  

Abstract Legionella pneumophila is the major causative agent of Legionnaires’ disease and Pontiac fever, which pose major public health problems. Rapid detection of L. pneumophila is important for global control of these diseases. Aptamers, short oligonucleotides that bind to targets with high affinity and specificity, have great potential for use in pathogenic bacterium detection, diagnostics, and therapy. Here, we used a whole-cell SELEX (systematic evolution of ligands by exponential enrichment) method to isolate and characterize single-stranded DNA (ssDNA) aptamers against L. pneumophila. A total of 60 ssDNA sequences were identified after 17 rounds of selection. Other bacterial species (Escherichia coli, Bacillus subtilis, Pseudomonas syringae, Staphylococcus aureus, Legionella quateirensis, and Legionella adelaidensis) were used for counterselection to enhance the specificity of ssDNA aptamers against L. pneumophila. Four ssDNA aptamers showed strong affinity and high selectivity for L. pneumophila, with Kd values in the nanomolar range. Bioinformatic analysis of the most specific aptamers revealed predicted conserved secondary structures that might bind to L. pneumophila cell walls. In addition, the binding of these four fluorescently labeled aptamers to the surface of L. pneumophila was observed directly by fluorescence microscopy. This is the first study to use SELEX to target L. pneumophila whole cells. The aptamers identified in this study could be used in the future to develop medical diagnostic tools and public environmental detection assays for L. pneumophila.


2021 ◽  
Vol 22 (9) ◽  
pp. 4823
Author(s):  
María Fernanda González ◽  
Paula Díaz ◽  
Alejandra Sandoval-Bórquez ◽  
Daniela Herrera ◽  
Andrew F. G. Quest

Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.


Author(s):  
Mara Quaglia ◽  
Marika Bocchini ◽  
Benedetta Orfei ◽  
Roberto D’Amato ◽  
Franco Famiani ◽  
...  

AbstractThe purpose of this study was to determine whether zinc phosphate treatments of tomato plants (Solanum lycopersicum L.) can attenuate bacterial speck disease severity through reduction of Pseudomonas syringae pv. tomato (Pst) growth in planta and induce morphological and biochemical plant defence responses. Tomato plants were treated with 10 ppm (25.90 µM) zinc phosphate and then spray inoculated with strain DAPP-PG 215, race 0 of Pst. Disease symptoms were recorded as chlorosis and/or necrosis per leaf (%) and as numbers of necrotic spots. Soil treatments with zinc phosphate protected susceptible tomato plants against Pst, with reductions in both disease severity and pathogen growth in planta. The reduction of Pst growth in planta combined with significantly higher zinc levels in zinc-phosphate-treated plants indicated direct antimicrobial toxicity of this microelement, as also confirmed by in vitro assays. Morphological (i.e. callose apposition) and biochemical (i.e., expression of salicylic-acid-dependent pathogenesis-related protein PR1b1 gene) defence responses were induced by the zinc phosphate treatment, as demonstrated by histochemical and qPCR analyses, respectively. In conclusion, soil treatments with zinc phosphate can protect tomato plants against Pst attacks through direct antimicrobial activity and induction of morphological and biochemical plant defence responses.


2021 ◽  
Vol 22 (5) ◽  
pp. 2643
Author(s):  
Mohamed F. Hassan ◽  
Abdelrahman M. Qutb ◽  
Wubei Dong

Antimicrobial peptides (AMPs) are small molecules consisting of less than fifty residues of amino acids. Plant AMPs establish the first barrier of defense in the innate immune system in response to invading pathogens. The purpose of this study was to isolate new AMPs from the Zea mays L. inbred line B73 and investigate their antimicrobial activities and mechanisms against certain essential plant pathogenic bacteria. In silico, the Collection of Anti-Microbial Peptides (CAMPR3), a computational AMP prediction server, was used to screen a cDNA library for AMPs. A ZM-804 peptide, isolated from the Z. mays L. inbred line B73 cDNA library, was predicted as a new cationic AMP with high prediction values. ZM-804 was tested against eleven pathogens of Gram-negative and Gram-positive bacteria and exhibited high antimicrobial activities as determined by the minimal inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs). A confocal laser scanning microscope observation showed that the ZM-804 AMP targets bacterial cell membranes. SEM and TEM images revealed the disruption and damage of the cell membrane morphology of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato (Pst) DC3000 caused by ZM-804. In planta, ZM-804 demonstrated antimicrobial activity and prevented the infection of tomato plants by Pst DC3000. Moreover, four virulent phytopathogenic bacteria were prevented from inducing hypersensitive response (HR) in tobacco leaves in response to low ZM-804 concentrations. ZM-804 exhibits low hemolytic activity against mouse red blood cells (RBCs) and is relatively safe for mammalian cells. In conclusion, the ZM-804 peptide has a strong antibacterial activity and provides an alternative tool for plant disease control. Additionally, the ZM-804 peptide is considered a promising candidate for human and animal drug development.


2021 ◽  
Vol 22 (14) ◽  
pp. 7440
Author(s):  
Shraddha K. Dahale ◽  
Daipayan Ghosh ◽  
Kishor D. Ingole ◽  
Anup Chugani ◽  
Sang Hee Kim ◽  
...  

Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.


Sign in / Sign up

Export Citation Format

Share Document