scholarly journals Pooled Surveillance Testing Program for Asymptomatic SARS-CoV-2 Infections in K-12 Schools and Universities

Author(s):  
Chongfeng Bi ◽  
Rachelle Mendoza ◽  
Hui-Ting Cheng ◽  
Gil Pagapas ◽  
Elmer Gabutan ◽  
...  

AbstractThe negative impact of continued school closures during the height of the COVID-19 pandemic warrants the establishment of new cost-effective strategies for surveillance and screening to safely reopen and monitor for potential in-school transmission. Here, we present a novel approach to increase the availability of repetitive and routine Covid-19 testing that may ultimately reduce the overall viral burden in the community. We describe implementation of a testing program that included students, faculty and staff from K-12 schools and universities participating in the SalivaClear™ pooled surveillance method (Mirimus Clinical Labs, Brooklyn, NY). Over 400,000 saliva specimens were self-collected from students, faculty and staff from 93 K-12 schools and 18 universities and tested in pools of up to 24 samples over a 20-week period during this pandemic. Peaks of positive cases were seen in the days following the Halloween, Thanksgiving and New Year holidays. Pooled testing did not significantly alter the sensitivity of the molecular assay in terms of both qualitative (100% detection rate on both pooled and individual samples) and quantitative (comparable cycle threshold (CT) values between pooled and individual samples) measures. Pooling samples substantially reduced the costs associated with PCR testing and allowed schools to rapidly assess transmission and adjust prevention protocols as necessary. By establishing low-cost, weekly testing of students and faculty, pooled saliva analysis enabled schools to determine whether transmission had occurred, make data-driven decisions, and adjust safety protocols. Pooled testing is a fundamental component to the reopening of schools, minimizing transmission among students and faculty.

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 719
Author(s):  
Teresa Russo ◽  
Pierpaolo Fucile ◽  
Rosa Giacometti ◽  
Filomena Sannino

Naturally occurring substances or polymeric biomolecules synthesized by living organisms during their entire life cycle are commonly defined as biopolymers. Different classifications of biopolymers have been proposed, focusing on their monomeric units, thus allowing them to be distinguished into three different classes with a huge diversity of secondary structures. Due to their ability to be easily manipulated and modified, their versatility, and their sustainability, biopolymers have been proposed in different fields of interest, starting from food, pharmaceutical, and biomedical industries, (i.e., as excipients, gelling agents, stabilizers, or thickeners). Furthermore, due to their sustainable and renewable features, their biodegradability, and their non-toxicity, biopolymers have also been proposed in wastewater treatment, in combination with different reinforcing materials (natural fibers, inorganic micro- or nano-sized fillers, antioxidants, and pigments) toward the development of novel composites with improved properties. On the other hand, the improper or illegal emission of untreated industrial, agricultural, and household wastewater containing a variety of organic and inorganic pollutants represents a great risk to aquatic systems, with a negative impact due to their high toxicity. Among the remediation techniques, adsorption is widely used and documented for its efficiency, intrinsic simplicity, and low cost. Biopolymers represent promising and challenging adsorbents for aquatic environments’ decontamination from organic and inorganic pollutants, allowing for protection of the environment and living organisms. This review summarizes the results obtained in recent years from the sustainable removal of contaminants by biopolymers, trying to identify open questions and future perspectives to overcome the present gaps and limitations.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 1-32
Author(s):  
Senthil Sivaswamy ◽  
Theodore (Ted) G. Tessier ◽  
Tony Curtis ◽  
David Clark ◽  
Kazuhisa Itoi ◽  
...  

Fan-Out Wafer Level Packaging (FO-WLP) technology has been developed in recent years to overcome the limitations of Fan-in WLP (FI-WLP) packages and to add more functionality to WLP. Fan-Out packages expand the WLP market to higher pin count devices and add multiple die System in Package (SiP) capability. In this paper, a novel approach to low cost fan-out packaging based on polyimide flex circuits and wafer level Embedded Die Customization (EDC) is discussed. ChipletT refers to Fan-Out packaging. ChipsetT refers to System in Package developed with WABE (Wafer and Board Level Embedding) technology. WABE technology is based on co-lamination of multi layer polyimide flex wiring and conductive z-axis sintered metal interconnections. Using WABE technology, ultra thin fan-out packages (0.4mm) can be fabricated with lower processing costs, higher throughput and with 3D extendibility. Embedded Die Customization is performed at the wafer level and involves optimization of the die-to-embedding process by using optimized wafer level processing capabilities including polymer processing, copper plating and wafer thinning. Reliability of the ChipletT packages, both component level and board level is evaluated. ChipletT packages show high reliability in component level testing and board level testing (Thermal Cycling and Drop Testing). The thermal performance of ChipletT packages were also evaluated in this study. Thermal resistance parameters θja and θjc were simulated with and without thermal vias for both face up and face down configurations. ChipletT provides a new low cost fan out packaging option with proven component level and board level reliability performance.


Author(s):  
Elias Brassitos ◽  
Qingchao Kong ◽  
Constantinos Mavroidis ◽  
Brian Weinberg

As modern robotic systems begin to permeate mass productions in consumer and healthcare products, the development of powerful cost-effective compact actuators represents a critical need to deliver commercially viable high performance robotic products. During the last years our team has developed a novel approach in actuator development which overcomes gearing packaging, efficiency and reliability problems of current actuators, paving the way for a new era of low-cost high-performance robotic products that are currently unattainable with existing commercial actuators. Our new actuator assembly, called the Gear Bearing Drive (GBD), uses three components comprising a brushless outrunner motor, two stage planetary gearbox, and novel rolling surfaces — all designed with overlapping functions and common features which interface together to drastically simplify and reduce the size and complexity of the actuator assembly. This unique approach allows embedding the motor within the planetary gearbox and further enables the actuator to operate without any traditional ball bearing, saving significant volume, cost, and manufacturing complexity. The low-cost gearbox combined with the high power output of brushless outrunner motors and typical high efficiencies of planetary gear arrangements results in compact, powerful and cost-effective robotic actuators with the potential to impact a number of industries ranging from consumer products to manufacturing and healthcare. In this paper we present the latest design improvements for the GBD so that we reduce friction and maximize efficiency. We also present a new design software for the GBD that has also been developed to reduce trial and error during the design phase and to speed up the production process.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shi-Yao Hou ◽  
Guanru Feng ◽  
Zipeng Wu ◽  
Hongyang Zou ◽  
Wei Shi ◽  
...  

AbstractSpinQ Gemini is a commercial desktop quantum computing platform designed and manufactured by SpinQ Technology. It is an integrated hardware-software system. The first generation product with two qubits was launched in January 2020. The hardware is based on NMR spectrometer, with permanent magnets providing ∼1 T magnetic field. SpinQ Gemini operates under room temperature (0–30°C), highlighting its lightweight (55 kg with a volume of $70\times 40 \times 80\text{ cm}^{3}$ 70 × 40 × 80  cm 3 ), cost-effective (under 50k USD), and maintenance-free. SpinQ Gemini aims to provide real-device experience for quantum computing education for K-12 and at the college level. It also features quantum control design capabilities that benefit the researchers studying quantum control and quantum noise. Since its first launch, SpinQ Gemini has been shipped to institutions in Canada, Taiwan and Mainland China. This paper introduces the system of design of SpinQ Gemini, from hardware to software. We also demonstrate examples for performing quantum computing tasks on SpinQ Gemini, including one task for a variational quantum eigensolver of a two-qubit Heisenberg model. The next generations of SpinQ quantum computing devices will adopt models of more qubits, advanced control functions for researchers with comparable cost, as well as simplified models for much lower cost (under 5k USD) for K-12 education. We believe that low-cost portable quantum computing products will facilitate hands-on experience for teaching quantum computing at all levels, well-prepare younger generations of students and researchers for the future of quantum technologies.


2020 ◽  
Author(s):  
Samuel J Raymond ◽  
Trevor Wesolowski ◽  
Sam Baker ◽  
Yuzhe Liu ◽  
Jordan L Edmunds ◽  
...  

For the past 50 years, positive pressure ventilation has been a cornerstone of treatment for respiratory failure. Consensus surrounding the epidemiology of respiratory failure has permitted a relatively good fit between the supply of ventilators and the demand. However, the current COVID-19 pandemic has increased demand for mechanical ventilators well beyond supply. Respiratory failure complicates most critically ill patients with COVID-19 and is characterized by highly heterogeneous pulmonary parenchymal involvement, profound hypoxemia and pulmonary vascular injury. The profound increase in the incidence of respiratory failure has exposed critical shortages in the supply of mechanical ventilators, and those with the necessary skills to treat. While most traditional ventilators rely on an internal compressor and mixer to moderate and control the gas mixture delivered to a patient, the current emergency climate has catalyzed alternative designs that might enable greater flexibility in terms of supply chain, manufacturing, storage and maintenance. Design considerations of these 'emergency response' ventilators have generally fallen into two categories: those that rely on mechanical compression of a known volume of gas and those powered by an internal compressor to deliver time cycled pressure- or volume-limited gas to the patient. The present work introduces a low-cost, ventilator designed and built in accordance with the Emergence Use guidance provided by the US Food and Drug Administration (FDA) wherein an external gas supply feeds into the ventilator and time limited flow interruption guarantees tidal volume. The goal of this device is to allow a patient to be treated by a single ventilator platform, capable of supporting the various treatment paradigms during a potential COVID-19 related hospitalization. This is a unique aspect of this design as it attempts to become a one-device-one-visit solution to the problem. The device is designed as a single use ventilator that is sufficiently robust to treat a patient being mechanically ventilated. The overall design philosophy and its applicability in this new crisis-laden world view is first described, followed by both bench top and animal testing results used to confirm the precision, capability, safety and reliability of this low cost and novel approach to mechanical ventilation during the COVID-19 pandemic. The ventilator is shown to perform in a range of critical requirements listed in the FDA emergency regulations and can safely and effectively ventilate a porcine subject. As of August 2020, only 13 emergency ventilators have been authorized by the FDA, and this work represents the first to publish animal data using the ventilator. This proof-of-concept provides support for this cost-effective, readily mass-produced ventilator that can be used to support patients when the demand for ventilators outstrips supply in hospital settings worldwide. More details for this project can be found at https://ventilator.stanford.edu/


2014 ◽  
Vol 16 (2) ◽  
pp. 316-328 ◽  

<div> <p>Trichloroethylene (TCE) is found in all mediums of environment in varying concentrations. Over the past 25 years, many engineered systems have been devised for its complete and sustainable degradation. This study reviews the environmental factors that influence the TCE pollution in environment and its biological mineralization via engineered systems. Although at some polluted sites natural attenuation of TCE has been found to occur but generally the natural process is very slow. The use of nanoparticles and composites provides a comparatively novel approach for the treatment of TCE contaminated waters. Biological engineered systems have been found to degrade TCE on much faster rates and higher concentrations. To identify the appropriate microorganisms in any engineered system that can effectively provide a low-cost treatment option for TCE degradation is the pressing need at the moment. Adding a second distinct organic phase to the aqueous medium for degrading fast and high concentration of TCE is recommended. The organic phase, which do not mix with the aqueous phase and can be easily separated, discharged, and reuse, should be selected based on its insolubility, volatility, non-biodegradability by the selected microorganism and the cost of the overall engineered system. Biodegradation offers the potential of cost effective treatment of TCE, however, that engineered systems should effectively use the biodegradative metabolism that nature has evolved.</p> </div> <p>&nbsp;</p>


2019 ◽  
Vol 8 (1) ◽  
pp. 3489
Author(s):  
Firdous Mir ◽  
Zakir Hussain Khanday ◽  
Sumer Singh

Propagation of the medicinal plants by usage of different media and PGR’s is laborious, cost-effective and is the possibility of genetic variation. In the present investigation, a novel protocol was first time developed for propagation of Gardenia gummifera Linn.f. This protocol is useful in all aspects viz low cost, time and free from genetic variation. This technology is efficient as compared to normal tissue culture technique which is used for conservation from last of two decades.


2020 ◽  
Vol 23 (65) ◽  
pp. 33-55 ◽  
Author(s):  
Raul Cesar Alves ◽  
Josué Silva de Morais ◽  
Keiji Yamanaka

Indoor localization has been considered to be the most fundamental problem when it comes to providing a robot with autonomous capabilities. Although many algorithms and sensors have been proposed, none have proven to work perfectly under all situations. Also, in order to improve the localization quality, some approaches use expensive devices either mounted on the robots or attached to the environment that don't naturally belong to human environments. This paper presents a novel approach that combines the benefits of two localization techniques, WiFi and Kinect, into a single algorithm using low-cost sensors. It uses separate Particle Filters (PFs). The WiFi PF gives the global location of the robot using signals of Access Point devices from different parts of the environment while it bounds particles of the Kinect PF, which determines the robot's pose locally. Our algorithm also tackles the Initialization/Kidnapped Robot Problem by detecting divergence on WiFi signals, which starts a localization recovering process. Furthermore, new methods for WiFi mapping and localization are introduced.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3967
Author(s):  
Ignas Daugela ◽  
Jurate Suziedelyte Visockiene ◽  
Jurate Kumpiene ◽  
Ivan Suzdalev

Global warming, as the result of the negative impact of humans on climate change, has been observed based on various data sources. Various measures have aimed to reduce anthropogenic factors, and also to lower carbon dioxide (CO2) and methane CH4 emissions. One of the main contributors to anthropogenic factors is organic waste in municipal solid waste landfills. There are many landfills where cost-effective rapid technologies for the identification and quantification of CH4 emission sites are not applied. There is still a need for the development of accessible and cost-effective methods that react in a real-time manner for the rapid detection and monitoring of methane emissions. This paper’s main goal is to create a prototype sensor suitable for operational measurement of the gas value, suitable for integration into geodetic equipment or an unmanned aerial vehicle system. A sensor system (device) was developed, which consisted of three semiconductor sensors—MQ2, MQ4, and MQ135—which aimed to capture flammable gases (CO2, CH4, O2 purity) and to evaluate the averages of the measured values from the components mounted on the board—the semiconductor sensors. The sensors were calibrated in a laboratory and tested in a closed landfill. The measurement data consisted of the read resistances (analog signal) from the MQ2, MQ4, and MQ135 sensors, and the relative humidity and the temperature (digital signal) of the DHT2 sensor with a timestamp calculated by the RTC module. The use of the method was confirmed because the sensors reacted as expected when placed in the vicinity of the gas collection well. Furthermore, the sensor will be tested and improved for field work in landfill sites.


Author(s):  
Tanwi Singh ◽  
Anshuman Sinha

The major risk associated with low platelet count in pregnancy is the increased risk of bleeding during the childbirth or post that. There is an increased blood supply to the uterus during pregnancy and the surgical procedure requires cutting of major blood vessels. Women with thrombocytopenia are at increased risk of losing excessive blood. The risk is more in case of caesarean delivery as compared to vaginal delivery. Hence based on above findings the present study was planned for Assessment of the Platelet Count in the Pregnant Women in IGIMS, Patna, Bihar. The present study was planned in Department of Pathology, Indira Gandhi Institute of Medical Science, Patna, Bihar, India. The present study was planned from duration of January 2019 to June 2019. In the present study 200 pregnant females samples received for the platelet estimation were enrolled in the present study. Clinically platelet indices can be a useful screening test for early identification of preeclampsia and eclampsia. Also platelet indices can assess the prognosis of this disease in pregnant women and can be used as an effective prognostic marker because it correlates with severity of the disease. Platelet count is a simple, low cost, and rapid routine screening test. Hence the data generated from the present study concludes that platelet count can be used as a simple and cost effective tool to monitor the progression of preeclampsia, thereby preventing complications to develop during the gestational period. Keywords: Platelet Count, Pregnant Women, IGIMS, Patna, Bihar, etc.


Sign in / Sign up

Export Citation Format

Share Document