Design Improvements and Design Methodology for the Gear Bearing Drive: A Compact, Powerful and Cost-Effective Robotic Actuator

Author(s):  
Elias Brassitos ◽  
Qingchao Kong ◽  
Constantinos Mavroidis ◽  
Brian Weinberg

As modern robotic systems begin to permeate mass productions in consumer and healthcare products, the development of powerful cost-effective compact actuators represents a critical need to deliver commercially viable high performance robotic products. During the last years our team has developed a novel approach in actuator development which overcomes gearing packaging, efficiency and reliability problems of current actuators, paving the way for a new era of low-cost high-performance robotic products that are currently unattainable with existing commercial actuators. Our new actuator assembly, called the Gear Bearing Drive (GBD), uses three components comprising a brushless outrunner motor, two stage planetary gearbox, and novel rolling surfaces — all designed with overlapping functions and common features which interface together to drastically simplify and reduce the size and complexity of the actuator assembly. This unique approach allows embedding the motor within the planetary gearbox and further enables the actuator to operate without any traditional ball bearing, saving significant volume, cost, and manufacturing complexity. The low-cost gearbox combined with the high power output of brushless outrunner motors and typical high efficiencies of planetary gear arrangements results in compact, powerful and cost-effective robotic actuators with the potential to impact a number of industries ranging from consumer products to manufacturing and healthcare. In this paper we present the latest design improvements for the GBD so that we reduce friction and maximize efficiency. We also present a new design software for the GBD that has also been developed to reduce trial and error during the design phase and to speed up the production process.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie

Abstract This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhangli Liu ◽  
Jiaxing Xu ◽  
Min Xu ◽  
Caifeng Huang ◽  
Ruzhu Wang ◽  
...  

AbstractThermally driven water-based sorption refrigeration is considered a promising strategy to realize near-zero-carbon cooling applications by addressing the urgent global climate challenge caused by conventional chlorofluorocarbon (CFC) refrigerants. However, developing cost-effective and high-performance water-sorption porous materials driven by low-temperature thermal energy is still a significant challenge. Here, we propose a zeolite-like aluminophosphate with SFO topology (EMM-8) for water-sorption-driven refrigeration. The EMM-8 is characterized by 12-membered ring channels with large accessible pore volume and exhibits high water uptake of 0.28 g·g−1 at P/P0 = 0.2, low-temperature regeneration of 65 °C, fast adsorption kinetics, remarkable hydrothermal stability, and scalable fabrication. Importantly, the water-sorption-based chiller with EMM-8 shows the potential of achieving a record coefficient of performance (COP) of 0.85 at an ultralow-driven temperature of 63 °C. The working performance makes EMM-8 a practical alternative to realize high-efficient ultra-low-temperature-driven refrigeration.


Author(s):  
Gamal Refai-Ahmed

The past few decades have seen a number of countries around the world emerge as a growing market for high performance computers. This present study examines, in more detail, how socio-economic influences are shaping the demand function and how some computing landscapes are changing as a consequence. This study is addressing one of the key initiatives to enable 50 percent of the world’s population with access to the World Wide Web. Furthermore, this investigation is addressing the challenges for electronics packaging Engineers and Researchers. Therefore, the rational of the developed technology based on the understanding target market and usages will be given. The impact of addressing the heat dissipation and managing the use of the raw materials of the intended products are discussed. In addition, how the electronics packaging engineers can focus on developing affordable innovative technology. Finally, the impact of all of the above is examined in developing the cost effective solution from a global point of view.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Fang ◽  
Ning Han ◽  
Fengyun Wang ◽  
Zai-xing Yang ◽  
SenPo Yip ◽  
...  

III–V semiconductor nanowire (NW) materials possess a combination of fascinating properties, including their tunable direct bandgap, high carrier mobility, excellent mechanical flexibility, and extraordinarily large surface-to-volume ratio, making them superior candidates for next generation electronics, photonics, and sensors, even possibly on flexible substrates. Understanding the synthesis, property manipulation, and device integration of these III–V NW materials is therefore crucial for their practical implementations. In this review, we present a comprehensive overview of the recent development in III–V NWs with the focus on their cost-effective synthesis, corresponding property control, and the relevant low-operating-power device applications. We will first introduce the synthesis methods and growth mechanisms of III–V NWs, emphasizing the low-cost solid-source chemical vapor deposition (SSCVD) technique, and then discuss the physical properties of III–V NWs with special attention on their dependences on several typical factors including the choice of catalysts, NW diameters, surface roughness, and surface decorations. After that, we present several different examples in the area of high-performance photovoltaics and low-power electronic circuit prototypes to further demonstrate the potential applications of these NW materials. Towards the end, we also make some remarks on the progress made and challenges remaining in the III–V NW research field.


2007 ◽  
Vol 29-30 ◽  
pp. 127-130
Author(s):  
Colleen J. Bettles ◽  
Rimma Lapovok ◽  
H.P. Ng ◽  
Dacian Tomus ◽  
Barry C. Muddle

The range of commercial titanium alloys available is currently extremely restricted, with one alloy (Ti-6Al-4V), and derivatives of it, accounting for a very large proportion of all applications. High performance alloys are costly to fabricate and limited to low-volume applications that can sustain the cost. With the emergence of new processing technologies that promise to reduce significantly the cost of production of titanium metal, especially in powder form, there is an emerging imperative for cost-effective near net shape powder processing techniques to permit the benefit of reduced metal cost to be passed on to higher-volume applications. Equally, there is a need for the design and development of new alloys that are intrinsically low-cost and lend themselves to fabrication by novel cost-effective net shape processing. The approaches that might be used to select, design and process both conventional alloys and novel alloy systems will be reviewed, with a focus on innovation in design of low-cost alloys amenable to new processing paths and increasingly tolerant of variability in composition.


2011 ◽  
Vol 121-126 ◽  
pp. 4023-4027 ◽  
Author(s):  
Guang Ming Li ◽  
Wen Hua Zeng ◽  
Jian Feng Zhao ◽  
Min Liu

The implementation platforms of parallel genetic algorithms (PGAs) include high performance computer, cluster and Grid. Contrast with the traditional platform, a Master-slave PGA based on MapReduce (MMRPGA) of cloud computing platform was proposed. Cloud computing is a new computer platform, suites for larger-scale computing and is low cost. At first, describes the design of MMRPGA, in which the whole evolution is controlled by Master and the fitness computing is assigned to Slaves; then deduces the theoretical speed-up of MMRPGA; at last, implements MMRPGA on Hadoop and compares the speed-up with traditional genetic algorithm, the experiment result shows MMRPGA can achieve slightly lower linear speed-up with Mapper’s number.


2021 ◽  
Author(s):  
Chongfeng Bi ◽  
Rachelle Mendoza ◽  
Hui-Ting Cheng ◽  
Gil Pagapas ◽  
Elmer Gabutan ◽  
...  

AbstractThe negative impact of continued school closures during the height of the COVID-19 pandemic warrants the establishment of new cost-effective strategies for surveillance and screening to safely reopen and monitor for potential in-school transmission. Here, we present a novel approach to increase the availability of repetitive and routine Covid-19 testing that may ultimately reduce the overall viral burden in the community. We describe implementation of a testing program that included students, faculty and staff from K-12 schools and universities participating in the SalivaClear™ pooled surveillance method (Mirimus Clinical Labs, Brooklyn, NY). Over 400,000 saliva specimens were self-collected from students, faculty and staff from 93 K-12 schools and 18 universities and tested in pools of up to 24 samples over a 20-week period during this pandemic. Peaks of positive cases were seen in the days following the Halloween, Thanksgiving and New Year holidays. Pooled testing did not significantly alter the sensitivity of the molecular assay in terms of both qualitative (100% detection rate on both pooled and individual samples) and quantitative (comparable cycle threshold (CT) values between pooled and individual samples) measures. Pooling samples substantially reduced the costs associated with PCR testing and allowed schools to rapidly assess transmission and adjust prevention protocols as necessary. By establishing low-cost, weekly testing of students and faculty, pooled saliva analysis enabled schools to determine whether transmission had occurred, make data-driven decisions, and adjust safety protocols. Pooled testing is a fundamental component to the reopening of schools, minimizing transmission among students and faculty.


Author(s):  
Qi Zhu ◽  
Lunyu Ma ◽  
Suresh K. Sitaraman

As the rapid advances in IC design and fabrication continue to challenge and push the electronic packaging technology, in terms of fine pitch, high performance, low cost, and good reliability, compliant interconnects show great advantages for next-generation packaging. β-fly is designed as a compliant chip-to-substrate interconnect for performing wafer-level probing and for packaging without underfill. β-fly has good compliance in all directions to compensate the coefficient of thermal expansion (CTE) mismatch between the silicon die and an organic substrate. The fabrication of β-fly is similar to standard IC fabrication, and wafer-level packaging makes it cost effective. In this work, self-weight effect and stress distribution under planar displacement loading of β-fly is studied. The effect of geometry parameters on mechanical and electrical performance of β-fly is also studied. β-fly with thinner and narrower arcuate beams with larger radius and taller post is found to have better mechanical compliance. In addition to mechanical compliance, electrical characteristics of β-fly have also been studied in this work. However, it is found that structures with excellent mechanical compliance cannot have good electrical performance. Therefore, a trade off is needed for the design of β-fly. Response surface methodology and an optimization technique have been used to select the optimal β-fly structure parameters.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1147 ◽  
Author(s):  
Yifei Tao ◽  
Tenghao Li ◽  
Chenxiao Yang ◽  
Naixiang Wang ◽  
Feng Yan ◽  
...  

Far-infrared radiation (FIR) possesses various promising properties that are beneficial to an individuals’ health. Exploring the interaction between fiber shapes and FIR performance is thought to be a significant means to develop highly-efficient FIR textile products. In this study, a non-additive triangular polyamide (PA) fiber showed excellent FIR properties in both theoretical simulation and experimental verification aspects. The triangular PA fiber affords a higher probability to facilitate large optical path difference, improving both FIR absorption and emission. Textiles woven with the specific triangular PA fiber achieved a remarkable emissivity of 91.85% and temperature difference of 2.11 Celsius, which is obviously superior to the reference circular fiber (86.72%, 1.52 Celsius). Considering the low cost, environmental stability, facile fabrication, as well as being environmentally friendly, this non-additive triangular PA fiber has great potential for high-performance and cost-effective FIR textiles in the future.


Sign in / Sign up

Export Citation Format

Share Document