scholarly journals Visualising formation of the ribosomal active site in mitochondria

2021 ◽  
Author(s):  
Viswanathan Chandrasekaran ◽  
Nirupa Desai ◽  
Nicholas O. Burton ◽  
Hanting Yang ◽  
Jon Price ◽  
...  

SummaryRibosome assembly is an essential and complex process that is regulated at each step by specific biogenesis factors. Using cryo-electron microscopy, we identify and order major steps in the formation of the highly conserved peptidyl transferase centre (PTC) and tRNA binding sites in the large subunit of the human mitochondrial ribosome (mitoribosome). The conserved GTPase GTPBP7 regulates the folding and incorporation of core 16S ribosomal RNA (rRNA) helices and the ribosomal protein bL36m, and ensures that the PTC base U3039 has been 2′-O-methylated. Additionally, GTPBP7 binds the RNA methyltransferase NSUN4 and MTERF4, which facilitate earlier steps by sequestering H68-71 of the 16S rRNA and allowing biogenesis factors to access the maturing PTC. Consistent with the central role of NSUN4•MTERF4 and GTPBP7 during mitoribosome biogenesis, in vivo mutagenesis designed to disrupt binding of their Caenorhabditis elegans orthologs to the large subunit potently activates mitochondrial stress responses and results in severely reduced viability, developmental delays and sterility. Next-generation RNA sequencing reveals widespread gene expression changes in these mutant animals that are indicative of mitochondrial stress response activation. We also answer the long-standing question of why NSUN4 but not its enzymatic activity, is indispensable for mitochondrial protein synthesis in metazoans.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Viswanathan Chandrasekaran ◽  
Nirupa Desai ◽  
Nicholas O Burton ◽  
Hanting Yang ◽  
Jon Price ◽  
...  

Ribosome assembly is an essential and conserved process that is regulated at each step by specific factors. Using cryo-electron microscopy (cryo-EM), we visualize the formation of the conserved peptidyl transferase center (PTC) of the human mitochondrial ribosome. The conserved GTPase GTPBP7 regulates the correct folding of 16S ribosomal RNA (rRNA) helices and ensures 2ʹ-O-methylation of the PTC base U3039. GTPBP7 binds the RNA methyltransferase NSUN4 and MTERF4, which sequester H68-71 of the 16S rRNA and allow biogenesis factors to access the maturing PTC. Mutations that disrupt binding of their Caenorhabditis elegans orthologs to the large subunit potently activate mitochondrial stress and cause viability, development, and sterility defects. Next-generation RNA sequencing reveals widespread gene expression changes in these mutant animals that are indicative of mitochondrial stress response activation. We also answer the long-standing question of why NSUN4, but not its enzymatic activity, is indispensable for mitochondrial protein synthesis.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 486
Author(s):  
Sílvia C. Rodrigues ◽  
Renato M. S. Cardoso ◽  
Filipe V. Duarte

The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.


Blood ◽  
2010 ◽  
Vol 116 (10) ◽  
pp. 1767-1775 ◽  
Author(s):  
Markus Bender ◽  
Anita Eckly ◽  
John H. Hartwig ◽  
Margitta Elvers ◽  
Irina Pleines ◽  
...  

Abstract The cellular and molecular mechanisms orchestrating the complex process by which bone marrow megakaryocytes form and release platelets remain poorly understood. Mature megakaryocytes generate long cytoplasmic extensions, proplatelets, which have the capacity to generate platelets. Although microtubules are the main structural component of proplatelets and microtubule sliding is known to drive proplatelet elongation, the role of actin dynamics in the process of platelet formation has remained elusive. Here, we tailored a mouse model lacking all ADF/n-cofilin–mediated actin dynamics in megakaryocytes to specifically elucidate the role of actin filament turnover in platelet formation. We demonstrate, for the first time, that in vivo actin filament turnover plays a critical role in the late stages of platelet formation from megakaryocytes and the proper sizing of platelets in the periphery. Our results provide the genetic proof that platelet production from megakaryocytes strictly requires dynamic changes in the actin cytoskeleton.


Author(s):  
Tilak Kumar Gupta ◽  
Sven Klumpe ◽  
Karin Gries ◽  
Steffen Heinz ◽  
Wojciech Wietrzynski ◽  
...  

AbstractVesicle-inducing protein in plastids (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-shaping function. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket that is required for VIPP1 oligomerization. Inside the ring’s lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo point mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Our study provides a structural basis for understanding how the oligomerization of VIPP1 drives the biogenesis of thylakoid membranes and protects these life-giving membranes from environmental stress.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianping Li ◽  
Sean K. Ryan ◽  
Erik Deboer ◽  
Kieona Cook ◽  
Shane Fitzgerald ◽  
...  

AbstractSchizophrenia (SZ) is a highly heterogeneous disorder in both its symptoms and risk factors. One of the most prevalent genetic risk factors for SZ is the hemizygous microdeletion at chromosome 22q11.2 (22q11DS) that confers a 25-fold increased risk. Six of the genes directly disrupted in 22qDS encode for mitochondrial-localizing proteins. Here, we test the hypothesis that stem cell-derived neurons from subjects with the 22q11DS and SZ have mitochondrial deficits relative to typically developing controls. Human iPSCs from four lines of affected subjects and five lines of controls were differentiated into forebrain-like excitatory neurons. In the patient group, we find significant reductions of ATP levels that appear to be secondary to reduced activity in oxidative phosphorylation complexes I and IV. Protein products of mitochondrial-encoded genes are also reduced. As one of the genes deleted in the 22q11.2 region is MRPL40, a component of the mitochondrial ribosome, we generated a heterozygous mutation of MRPL40 in a healthy control iPSC line. Relative to its isogenic control, this line shows similar deficits in mitochondrial DNA-encoded proteins, ATP level, and complex I and IV activity. These results suggest that in the 22q11DS MRPL40 heterozygosity leads to reduced mitochondria ATP production secondary to altered mitochondrial protein levels. Such defects could have profound effects on neuronal function in vivo.


2007 ◽  
Vol 27 (20) ◽  
pp. 7334-7344 ◽  
Author(s):  
Vinod Sridharan ◽  
Ravinder Singh

ABSTRACT Recognition of polypyrimidine (Py) tracts typically present between the branch point and the 3′ splice site by the large subunit of the essential splicing factor U2AF is a key early step in pre-mRNA splicing. Diverse intronic sequence arrangements exist, however, including 3′ splice sites lacking recognizable Py tracts, which raises the question of how general the requirement for U2AF is for various intron architectures. Our analysis of fission yeast introns in vivo has unexpectedly revealed that whereas introns lacking Py tracts altogether remain dependent on both subunits of U2AF, introns with long Py tracts, unconventionally positioned upstream of branch points, are unaffected by U2AF inactivation. Nevertheless, mutation of these Py tracts causes strong dependence on the large subunit U2AF59. We also find that Py tract diversity influences the requirement for the conserved C-terminal domain of U2AF59 (RNA recognition motif 3), which has been implicated in protein-protein interactions with other splicing factors. Together, these results suggest that in addition to Py tract binding by U2AF, supplementary mechanisms of U2AF recruitment and 3′ splice site identification exist to accommodate diverse intron architectures, which have gone unappreciated in biochemical studies of model pre-mRNAs.


2008 ◽  
Vol 86 (3) ◽  
pp. 271-277 ◽  
Author(s):  
In-Jay Chen ◽  
I-Ann Wang ◽  
Lin-Ru Tai ◽  
Alan Lin

The phylogenic alignment of homologous L35 protein suggests that human large subunit ribosomal protein L35 carries a 54 aa eukaryotic expansion segment (ES) at the C-terminal end. Within this ES, the first 25 amino acid residues were found to be essential for the nuclear import of the protein. The last 29 residues of the ES were shown to be uninvolved in the ribosome’s structural and translational functions, although this region proved to be one of the contact sites for ribosomal docking to endoplasmic reticulum, as evident from the results of an in vivo recombinant ribosome analysis.


Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1816-1822 ◽  
Author(s):  
Samuele Peppoloni ◽  
Brunella Posteraro ◽  
Bruna Colombari ◽  
Lidia Manca ◽  
Axel Hartke ◽  
...  

Enterococcus faecalis is a significant human pathogen worldwide and is responsible for severe nosocomial and community-acquired infections. Although enterococcal meningitis is rare, mortality is considerable, reaching 21 %. Nevertheless, the pathogenetic mechanisms of this infection remain poorly understood, even though the ability of E. faecalis to avoid or survive phagocytic attack in vivo may be very important during the infection process. We previously showed that the manganese-cofactored superoxide dismutase (MnSOD) SodA of E. faecalis was implicated in oxidative stress responses and, interestingly, in the survival within mouse peritoneal macrophages using an in vivo–in vitro infection model. In the present study, we investigated the role of MnSOD in the interaction of E. faecalis with microglia, the brain-resident macrophages. By using an in vitro infection model, murine microglial cells were challenged in parallel with the wild-type strain JH2-2 and its isogenic sodA deletion mutant. While both strains were phagocytosed by microglia efficiently and to a similar extent, the ΔsodA mutant was found to be significantly more susceptible to microglial killing than JH2-2, as assessed by the antimicrobial protection assay. In addition, a significantly higher percentage of acidic ΔsodA-containing phagosomes was found and these also underwent enhanced maturation as determined by the expression of endolysosomal markers. In conclusion, these results show that the MnSOD of E. faecalis contributes to survival of the bacterium in microglial cells by influencing their antimicrobial activity, and this could even be important for intracellular killing in neutrophils and thus for E. faecalis pathogenesis.


Author(s):  
Sherif Rashad ◽  
Teiji Tominaga ◽  
Kuniyasu Niizuma

AbstractFollowing stress, tRNA is cleaved to generate tRNA halves (tiRNAs). These stress-induced small RNAs have been shown to regulate translation during stress. To date, angiogenin is considered the main enzyme that cleaves tRNA at its anti-codon site to generate 35 ~ 45 nucleotide long 5′ and 3′ tiRNA halves, however recent reports indicate the presence of angiogenin-independent cleavage. We previously observed tRNA cleavage pattern occurring away from the anti-codon site. To explore this non-canonical cleavage, we analyze tRNA phenotypical cleavage patterns in rat model of ischemia reperfusion and in two rat cell lines. In vivo mitochondrial tRNAs were prone to this non-canonical cleavage pattern. In vitro, however, both cytosolic and mitochondrial tRNAs could be cleaved non-canonically. We also evaluated the roles of angiogenin and its inhibitor, RNH1, in regulating tRNA cleavage during stress. Our results suggest that mitochondrial stress has an important regulatory role in angiogenin-mediated tRNA cleavage. Angiogenin does not appear to regulate the non-canonical cleavage pattern of tRNA, and RNH1 does not affect it as well. Finally, we verified our previous findings of the stress-specific role of Alkbh1 in regulating tRNA cleavage and showed a strong influence of stress type on Alkbh1-mediated tRNA cleavage and that Alkbh1 impacts non-canonical tRNA cleavage.


Science ◽  
2021 ◽  
Vol 371 (6531) ◽  
pp. 846-849
Author(s):  
Yuzuru Itoh ◽  
Juni Andréll ◽  
Austin Choi ◽  
Uwe Richter ◽  
Priyanka Maiti ◽  
...  

Mitochondrial ribosomes (mitoribosomes) are tethered to the mitochondrial inner membrane to facilitate the cotranslational membrane insertion of the synthesized proteins. We report cryo–electron microscopy structures of human mitoribosomes with nascent polypeptide, bound to the insertase oxidase assembly 1–like (OXA1L) through three distinct contact sites. OXA1L binding is correlated with a series of conformational changes in the mitoribosomal large subunit that catalyze the delivery of newly synthesized polypeptides. The mechanism relies on the folding of mL45 inside the exit tunnel, forming two specific constriction sites that would limit helix formation of the nascent chain. A gap is formed between the exit and the membrane, making the newly synthesized proteins accessible. Our data elucidate the basis by which mitoribosomes interact with the OXA1L insertase to couple protein synthesis and membrane delivery.


Sign in / Sign up

Export Citation Format

Share Document