scholarly journals Differential effects of environmental and endogenous 24h rhythms within a deep-coverage spatiotemporal proteome

2021 ◽  
Author(s):  
Holly MM Kay ◽  
Ellen Grunewald ◽  
Helen K Feord ◽  
Sergio Gil ◽  
Sew Y Peak-Chew ◽  
...  

The cellular landscape of most eukaryotic cells changes dramatically over the course of a 24h day. Whilst the proteome responds directly to daily environmental cycles, it is also regulated by a cellular circadian clock that anticipates the differing demands of day and night. To quantify the relative contribution of diurnal versus circadian regulation, we mapped spatiotemporal proteome dynamics under 12h:12h light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage of the theoretical proteome which provided an unprecedented insight into the identity of proteins that drive and facilitate rhythmic cellular functions. Surprisingly, the overlap between diurnally- and circadian-regulated proteins was quite modest (11%). These proteins exhibited different phases of oscillation between the two conditions, consistent with an interaction between intrinsic and extrinsic regulatory factors. The relative amplitude of rhythmic protein abundance was much lower than would be expected from daily variations in transcript abundance. Transcript rhythmicity was poorly predictive of daily variation in abundance of the encoded protein. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a remarkably different phase distribution compared with rhythmic soluble proteins, indicating the existence of a novel circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Taken together, our observations argue that the daily spatiotemporal regulation of cellular proteome composition is not dictated solely by clock-regulated gene expression. Instead, it also involves extensive rhythmic post-transcriptional, translational, and post-translational regulation that is further modulated by environmental timing cues.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Holly Kay ◽  
Ellen Grünewald ◽  
Helen K. Feord ◽  
Sergio Gil ◽  
Sew Y. Peak-Chew ◽  
...  

AbstractThe cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1960
Author(s):  
K. Tanuj Sapra ◽  
Ohad Medalia

The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gregory M. Weber ◽  
Jill Birkett ◽  
Kyle Martin ◽  
Doug Dixon ◽  
Guangtu Gao ◽  
...  

Abstract Background Transcription is arrested in the late stage oocyte and therefore the maternal transcriptome stored in the oocyte provides nearly all the mRNA required for oocyte maturation, fertilization, and early cleavage of the embryo. The transcriptome of the unfertilized egg, therefore, has potential to provide markers for predictors of egg quality and diagnosing problems with embryo production encountered by fish hatcheries. Although levels of specific transcripts have been shown to associate with measures of egg quality, these differentially expressed genes (DEGs) have not been consistent among studies. The present study compares differences in select transcripts among unfertilized rainbow trout eggs of different quality based on eyeing rate, among 2 year classes of the same line (A1, A2) and a population from a different hatchery (B). The study compared 65 transcripts previously reported to be differentially expressed with egg quality in rainbow trout. Results There were 32 transcripts identified as DEGs among the three groups by regression analysis. Group A1 had the most DEGs, 26; A2 had 15, 14 of which were shared with A1; and B had 12, 7 of which overlapped with A1 or A2. Six transcripts were found in all three groups, dcaf11, impa2, mrpl39_like, senp7, tfip11 and uchl1. Conclusions Our results confirmed maternal transcripts found to be differentially expressed between low- and high-quality eggs in one population of rainbow trout can often be found to overlap with DEGs in other populations. The transcripts differentially expressed with egg quality remain consistent among year classes of the same line. Greater similarity in dysregulated transcripts within year classes of the same line than among lines suggests patterns of transcriptome dysregulation may provide insight into causes of decreased viability within a hatchery population. Although many DEGs were identified, for each of the genes there is considerable variability in transcript abundance among eggs of similar quality and low correlations between transcript abundance and eyeing rate, making it highly improbable to predict the quality of a single batch of eggs based on transcript abundance of just a few genes.


2021 ◽  
Vol 9 (5) ◽  
pp. 1058
Author(s):  
Antonia María Romero ◽  
María Teresa Martínez-Pastor ◽  
Sergi Puig

Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 806
Author(s):  
Moez Maghrebi ◽  
Elena Baldoni ◽  
Giorgio Lucchini ◽  
Gianpiero Vigani ◽  
Giampiero Valè ◽  
...  

Two rice accessions, Capataz and Beirao, contrasting for cadmium (Cd) tolerance and root retention, were exposed to a broad range of Cd concentrations (0.01, 0.1, and 1 μM) and analyzed for their potential capacity to chelate, compartmentalize, and translocate Cd to gain information about the relative contribution of these processes in determining the different pathways of Cd distribution along the plants. In Capataz, Cd root retention increased with the external Cd concentration, while in Beirao it resulted independent of Cd availability and significantly higher than in Capataz at the lowest Cd concentrations analyzed. Analysis of thiol accumulation in the roots revealed that the different amounts of these compounds in Capataz and Beirao, as well as the expression levels of genes involved in phytochelatin biosynthesis and direct Cd sequestration into the vacuoles of the root cells, were not related to the capacity of the accessions to trap the metal into the roots. Interestingly, the relative transcript abundance of OsHMA2, a gene controlling root-to-shoot Cd/Zn translocation, was not influenced by Cd exposure in Capataz and progressively increased in Beirao with the external Cd concentration, suggesting that activity of the OsHMA2 transporter may differentially limit root-to-shoot Cd/Zn translocation in Capataz and Beirao.


2010 ◽  
Vol 135 (4) ◽  
pp. 291-302 ◽  
Author(s):  
Kaori Ando ◽  
Rebecca Grumet

Fruit development proceeds from cell division to expansion, maturation, and ripening. Expansion is critical for size, yield, and quality; however, this period of development has received little attention. We used 454-pyrosequencing to develop a cucumber (Cucumis sativus) fruit transcriptome, identify highly expressed transcripts, and characterize key functions during exponential fruit growth. The resulting 187,406 expressed sequence tags (ESTs) were assembled into 13,878 contigs. Quantitative real-time polymerase chain reaction (qRT-PCR) verification of differentially expressed genes from fruit of different ages, and high correlation in transcript frequency between replicates, indicated that number of reads/contig reflects transcript abundance. Putative homologs were identified in Arabidopsis thaliana for 89% of the contigs represented by at least 10 ESTs; another 4% had homologs in other species. The remainder had homologs only in cucurbit species. The most highly expressed contigs were strongly enriched for growth (aquaporins, vacuolar ATPase, phloem proteins, tubulins, actins, cell wall-associated, and hormone-related), lipid, latex, and defense-related homologs. These results provide a resource for gene expression analysis in cucumber, profile gene expression in rapidly growing fruit, and shed insight into an important, but poorly characterized, developmental stage influencing fruit yield and quality.


2018 ◽  
Author(s):  
Anindita Bhattacharya ◽  
Mahesh Agarwal ◽  
Rachita Mukherjee ◽  
Prosenjit Sen ◽  
Deepak Kumar Sinha

AbstractDifferentiation of monocytes entails their relocation from blood to the tissue, hence accompanied by an altered physicochemical micro-environment. While the mechanism by which the biochemical make-up of the micro-environment induces differentiation is known, the fluid-like to gel-like transition in the physical micro-environment is not well understood. Monocytes maintain non-adherent state to prevent differentiation. We establish that irrespective of the chemical makeup, a 3D gel-like micro-environment induces a positive-feedback loop of adhesion-MAPK-NF-κβ activation to facilitate differentiation. In 2D fluid-like micro-environment, adhesion alone is capable of inducing differentiation via the same positive-feedback signalling. Chemical inducer treatment in fluid-like micro-environment, increases the propensity of monocyte adhesion via a brief pulse of p-MAPK. The adhesion subsequently elicit differentiation, establishing that adhesion is both necessary and sufficient to induce differentiation in 2D/3D micro-environment. Our findings challenge the notion that adhesion is a result of monocyte differentiation. Rather it’s the adhesion which triggers the differentiation of monocytes. MAPK, and NF-κβ being key molecules of multiple signaling pathways, we hypothesize that biochemically inert 3D gel-like micro-environment would also influence other cellular functions.Summary statementThis article brings out a new insight into the novel mechanisms of monocyte differentiation solely driven by physical micro-environment and adhesion.


2019 ◽  
Author(s):  
Kathryn P. Wall ◽  
Harold Hart ◽  
Thomas Lee ◽  
Cynthia Page ◽  
Taviare L. Hawkins ◽  
...  

ABSTRACTMicrotubules are biopolymers that perform diverse cellular functions. The regulation of microtubule behavior occurs in part through post-translational modification of both the α- and β- subunits of tubulin. One class of modifications is the heterogeneous addition of glycine and glutamate residues to the disordered C-terminal tails of tubulin. Due to their prevalence in stable, high stress cellular structures such as cilia, we sought to determine if these modifications alter the intrinsic stiffness of microtubules. Here we describe the purification and characterization of differentially-modified pools of tubulin from Tetrahymena thermophila. We found that glycylation on the α-C-terminal tail is a key determinant of microtubule stiffness, but does not affect the number of protofilaments incorporated into microtubules. We measured the dynamics of the tail peptide backbone using nuclear magnetic resonance spectroscopy. We found that the spin-spin relaxation rate (R2) showed a pronounced decreased as a function of distance from the tubulin surface for the α-tubulin tail, indicating that the α-tubulin tail interacts with the dimer surface. This suggests that the interactions of the α-C-terminal tail with the tubulin body contributes to the stiffness of the assembled microtubule, providing insight into the mechanism by which glycylation and glutamylation can alter microtubule mechanical properties.SIGNIFICANCEMicrotubules are regulated in part by post-translational modifications including the heterogeneous addition of glycine and glutamate residues to the C-terminal tails. By producing and characterizing differentially-modified tubulin, this work provides insight into the molecular mechanisms of how these modifications alter intrinsic microtubule properties such as flexibility. These results have broader implications for mechanisms of how ciliary structures are able to function under high stress.


2020 ◽  
Vol 117 (40) ◽  
pp. 24825-24836 ◽  
Author(s):  
Ashlee H. Sun ◽  
John R. Collette ◽  
Richard N. Sifers

The failure of polypeptides to achieve conformational maturation following biosynthesis can result in the formation of protein aggregates capable of disrupting essential cellular functions. In the secretory pathway, misfolded asparagine (N)-linked glycoproteins are selectively sorted for endoplasmic reticulum-associated degradation (ERAD) in response to the catalytic removal of terminal alpha-linked mannose units. Remarkably, ER mannosidase I/Man1b1, the first alpha-mannosidase implicated in this conventional N-glycan-mediated process, can also contribute to ERAD in an unconventional, catalysis-independent manner. To interrogate this functional dichotomy, the intracellular fates of two naturally occurring misfolded N-glycosylated variants of human alpha1-antitrypsin (AAT), Null Hong Kong (NHK), and Z (ATZ), in Man1b1 knockout HEK293T cells were monitored in response to mutated or truncated forms of transfected Man1b1. As expected, the conventional catalytic system requires an intact active site in the Man1b1 luminal domain. In contrast, the unconventional system is under the control of an evolutionarily extended N-terminal cytoplasmic tail. Also, N-glycans attached to misfolded AAT are not required for accelerated degradation mediated by the unconventional system, further demonstrating its catalysis-independent nature. We also established that both systems accelerate the proteasomal degradation of NHK in metabolic pulse-chase labeling studies. Taken together, these results have identified the previously unrecognized regulatory capacity of the Man1b1 cytoplasmic tail and provided insight into the functional dichotomy of Man1b1 as a component in the mammalian proteostasis network.


Sign in / Sign up

Export Citation Format

Share Document