scholarly journals Single-cell resolution of MET and EMT programs during zebrafish fin regeneration

2021 ◽  
Author(s):  
W. Joyce Tang ◽  
Claire J. Watson ◽  
Theresa Olmstead ◽  
Christopher H. Allan ◽  
Ronald Y. Kwon

SUMMARYWhile humans have limited potential for limb regeneration, some vertebrates can regenerate bony appendages following amputation. During zebrafish fin regeneration, mature osteoblasts at the amputation stump dedifferentiate and migrate to the blastema, where they re-enter the cell cycle and then re-differentiate to form new bone. Osteoblastic cells exhibit dual mesenchymal and epithelial characteristics during fin regeneration, however little is known about why or how this occurs. Using single-cell RNA-sequencing, we found osteoprogenitors are enriched with components associated with the epithelial-to-mesenchymal transition (EMT) and its reverse, mesenchymal-to-epithelial transition (MET). In trajectory analyses, osteoblastic cells solely expressed EMT components, or transiently expressed MET components prior to expressing those for EMT. We found that cdh11, a cancer EMT marker, is expressed during osteoblast dedifferentiation. We also found that esrp1, a regulator of alternative splicing in epithelial cells whose expression is important for MET, is expressed in a subset of osteoprogenitors during outgrowth. This study provides a valuable single cell resource for the study of osteoblast differentiation during zebrafish fin regeneration, and identifies MET- and EMT-associated components which may be important for successful appendage regeneration.

2020 ◽  
Author(s):  
Khun Zaw Latt ◽  
Jurgen Heymann ◽  
Joseph H. Jessee ◽  
Avi Z. Rosenberg ◽  
Celine C. Berthier ◽  
...  

AbstractThe diagnosis of focal segmental glomerulosclerosis (FSGS) requires a renal biopsy, which is invasive and can be problematic in children and in some adults. We used single cell RNA-sequencing to explore disease-related cellular signatures in 23 urine samples from 12 FSGS subjects. We identified immune cells, predominantly monocytes, and renal epithelial cells, including podocytes. Analysis revealed M1 and M2 monocyte subsets, and podocytes showing high expression of genes for epithelial-to-mesenchymal transition (EMT). We confirmed M1 and M2 gene signatures using published monocyte/macrophage data from lupus nephritis and cancer. Using renal transcriptomic data from the Nephrotic Syndrome Study Network (NEPTUNE), we found that urine cell immune and EMT signature genes showed higher expression in FSGS biopsies compared to minimal change disease biopsies. These results suggest that urine cell profiling may serve as a diagnostic and prognostic tool in nephrotic syndrome and aid in identifying novel biomarkers and developing personalized therapeutic strategies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lukas S. Tombor ◽  
David John ◽  
Simone F. Glaser ◽  
Guillermo Luxán ◽  
Elvira Forte ◽  
...  

AbstractEndothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


2015 ◽  
Vol 112 (23) ◽  
pp. 7327-7332 ◽  
Author(s):  
Tomasz Kurcon ◽  
Zhongyin Liu ◽  
Anika V. Paradkar ◽  
Christopher A. Vaiana ◽  
Sujeethraj Koppolu ◽  
...  

Glycosylation, the most abundant posttranslational modification, holds an unprecedented capacity for altering biological function. Our ability to harness glycosylation as a means to control biological systems is hampered by our inability to pinpoint the specific glycans and corresponding biosynthetic enzymes underlying a biological process. Herein we identify glycosylation enzymes acting as regulatory elements within a pathway using microRNA (miRNA) as a proxy. Leveraging the target network of the miRNA-200 family (miR-200f), regulators of epithelial-to-mesenchymal transition (EMT), we pinpoint genes encoding multiple promesenchymal glycosylation enzymes (glycogenes). We focus on three enzymes, beta-1,3-glucosyltransferase (B3GLCT), beta-galactoside alpha-2,3-sialyltransferase 5 (ST3GAL5), and (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 5 (ST6GALNAC5), encoding glycans that are difficult to analyze by traditional methods. Silencing these glycogenes phenocopied the effect of miR-200f, inducing mesenchymal-to-epithelial transition. In addition, all three are up-regulated in TGF-β–induced EMT, suggesting tight integration within the EMT-signaling network. Our work indicates that miRNA can act as a relatively simple proxy to decrypt which glycogenes, including those encoding difficult-to-analyze structures (e.g., proteoglycans, glycolipids), are functionally important in a biological pathway, setting the stage for the rapid identification of glycosylation enzymes driving disease states.


2019 ◽  
Author(s):  
Gemma L. Johnson ◽  
Erick J. Masias ◽  
Jessica A. Lehoczky

ABSTRACTInnate regeneration following digit tip amputation is one of the few examples of epimorphic regeneration in mammals. Digit tip regeneration is mediated by the blastema, the same structure invoked during limb regeneration in some lower vertebrates. By genetic lineage analyses in mice, the digit tip blastema has been defined as a population of heterogeneous, lineage restricted progenitor cells. These previous studies, however, do not comprehensively evaluate blastema heterogeneity or address lineage restriction of closely related cell types. In this report we present single cell RNA sequencing of over 38,000 cells from mouse digit tip blastemas and unamputated control digit tips and generate an atlas of the cell types participating in digit tip regeneration. We define the differentiation trajectories of vascular, monocytic, and fibroblastic lineages over regeneration, and while our data confirm broad lineage restriction of progenitors, our analysis reveals an early blastema fibroblast population expressing a novel regeneration-specific gene, Mest.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0203389 ◽  
Author(s):  
Smita Krishnaswamy ◽  
Nevena Zivanovic ◽  
Roshan Sharma ◽  
Dana Pe’er ◽  
Bernd Bodenmiller

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhenling Deng ◽  
Xinyao Wang ◽  
Yue Liu ◽  
Xinyu Tian ◽  
Shaohui Deng ◽  
...  

AbstractIncreasing evidence has confirmed that immunoglobulins (Igs) can be expressed in non-B cells. Our previous work demonstrated that mesangial cells and podocytes express IgA and IgG, respectively. The aim of this work was to reveal whether proximal tubular epithelial cells (PTECs) express Igs. High-throughput single-cell RNA sequencing (scRNA-seq) detected Igs in a small number of PTECs, and then we combined nested PCR with Sanger sequencing to detect the transcripts and characterize the repertoires of Igs in PTECs. We sorted PTECs from the normal renal cortex of two patients with renal cancer by FACS and further confirmed their identify by LRP2 gene expression. Only the transcripts of the IgG heavy chain were successfully amplified in 91/111 single PTECs. We cloned and sequenced 469 VHDJH transcripts from 91 single PTECs and found that PTEC-derived IgG exhibited classic VHDJH rearrangements with nucleotide additions at the junctions and somatic hypermutations. Compared with B cell-derived IgG, PTEC-derived IgG displayed less diversity of VHDJH rearrangements, predominant VH1-24/DH2-15/JH4 sequences, biased VH1 usage, centralized VH gene segment location at the 3′ end of the genome and non-Gaussian distribution of the CDR3 length. These results demonstrate that PTECs can express a distinct IgG repertoire that may have implications for their role in the renal tubular epithelial-mesenchymal transition.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 858 ◽  
Author(s):  
Burcu Sengez ◽  
Ilkin Aygün ◽  
Huma Shehwana ◽  
Neslihan Toyran ◽  
Sanem Tercan Avci ◽  
...  

The epithelial to mesenchymal transition (EMT) and the mesenchymal to epithelial transition (MET) are two critical biological processes that are involved in both physiological events such as embryogenesis and development and also pathological events such as tumorigenesis. They present with dramatic changes in cellular morphology and gene expression exhibiting acute changes in E-cadherin expression. Despite the comprehensive understanding of EMT, the regulation of MET is far from being understood. To find novel regulators of MET, we hypothesized that such factors would correlate with Cdh1 expression. Bioinformatics examination of several expression profiles suggested Elf3 as a strong candidate. Depletion of Elf3 at the onset of MET severely impaired the progression to the epithelial state. This MET defect was explained, in part, by the absence of E-cadherin at the plasma membrane. Moreover, during MET, ELF3 interacts with the Grhl3 promoter and activates its expression. Our findings present novel insights into the regulation of MET and reveal ELF3 as an indispensable guardian of the epithelial state. A better understanding of MET will, eventually, lead to better management of metastatic cancers.


2016 ◽  
Vol 13 (118) ◽  
pp. 20151106 ◽  
Author(s):  
Marcelo Boareto ◽  
Mohit Kumar Jolly ◽  
Aaron Goldman ◽  
Mika Pietilä ◽  
Sendurai A. Mani ◽  
...  

Metastasis can involve repeated cycles of epithelial-to-mesenchymal transition (EMT) and its reverse mesenchymal-to-epithelial transition. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that allows the migration of adhering cells to form a cluster of circulating tumour cells. These clusters can be apoptosis-resistant and possess an increased metastatic propensity as compared to the cells that undergo a complete EMT (mesenchymal cells). Hence, identifying the key players that can regulate the formation and maintenance of such clusters may inform anti-metastasis strategies. Here, we devise a mechanism-based theoretical model that links cell–cell communication via Notch-Delta-Jagged signalling with the regulation of EMT. We demonstrate that while both Notch-Delta and Notch-Jagged signalling can induce EMT in a population of cells, only Jagged-dominated Notch signalling, but not Delta-dominated signalling, can lead to the formation of clusters containing hybrid E/M cells. Our results offer possible mechanistic insights into the role of Jagged in tumour progression, and offer a framework to investigate the effects of other microenvironmental signals during metastasis.


Author(s):  
Weikang Wang ◽  
Jianhua Xing

ABSTRACTA problem ubiquitous in almost all scientific areas is escape from a metastable state, or relaxation from one stationary distribution to a new one1. More than a century of studies lead to celebrated theoretical and computational developments such as the transition state theory and reactive flux formulation. Modern transition path sampling and transition path theory focus on an ensemble of trajectories that connect the initial and final states in a state space2, 3. However, it is generally unfeasible to experimentally observe these trajectories in multiple dimensions and compare to theoretical results. Here we report and analyze single cell trajectories of human A549 cells undergoing TGF-β induced epithelial-to-mesenchymal transition (EMT) in a combined morphology and protein texture space obtained through time lapse imaging. From the trajectories we identify parallel reaction paths with corresponding reaction coordinates and quasi-potentials. Studying cell phenotypic transition dynamics will provide testing grounds for nonequilibrium reaction rate theories.


Sign in / Sign up

Export Citation Format

Share Document