scholarly journals Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis

2021 ◽  
Author(s):  
Florian Kabinger ◽  
Carina Stiller ◽  
Jana Schmitzová ◽  
Christian Dienemann ◽  
Hauke S. Hillen ◽  
...  

Molnupiravir is an orally available antiviral drug candidate that is in phase III trials for the treatment of COVID-19 patients. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in patients. Here we establish the molecular mechanisms that underlie molnupiravir-induced RNA mutagenesis by the RNA-dependent RNA polymerase (RdRp) of the coronavirus SARS-CoV-2. Biochemical assays show that the RdRp readily uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of CTP or UTP. Incorporation of NHC monophosphate into nascent RNA does not impair further RdRp progression. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes containing mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism likely applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.

Author(s):  
Florian Kabinger ◽  
Carina Stiller ◽  
Jana Schmitzová ◽  
Christian Dienemann ◽  
Goran Kokic ◽  
...  

AbstractMolnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-d-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp–RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.


2020 ◽  
Author(s):  
Julia Brandts ◽  
Kausik K Ray

Inclisiran is a siRNA inhibiting hepatic PCSK9 synthesis. As a first-in-class therapy, inclisiran has been assessed within the ORION trial program for its low-density lipoprotein cholesterol (LDL-C) lowering efficacy and clinical safety. Phase II and III trials have shown that inclisiran lowers LDL-C by about 50% with an infrequent dosing schedule in patients with established atherosclerotic cardiovascular disease and those at high risk, including patients with heterozygous familial hypercholesterolemia. Ongoing Phase III trials will provide evidence on longer-term safety and effectiveness, and inclisiran’s efficacy in patients with homozygous familial hypercholesterolemia. Furthermore, the ORION-4 trial will assess inclisiran’s impact on cardiovascular outcomes.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 216
Author(s):  
Alanna C. Tseng ◽  
Vivek R. Nerurkar ◽  
Kabi R. Neupane ◽  
Helmut Kae ◽  
Pakieli H. Kaufusi

West Nile virus (WNV) nonstructural protein 3 (NS3) harbors the viral triphosphatase and helicase for viral RNA synthesis and, together with NS2B, constitutes the protease responsible for polyprotein processing. NS3 is a soluble protein, but it is localized to specialized compartments at the rough endoplasmic reticulum (RER), where its enzymatic functions are essential for virus replication. However, the mechanistic details behind the recruitment of NS3 from the cytoplasm to the RER have not yet been fully elucidated. In this study, we employed immunofluorescence and biochemical assays to demonstrate that NS3, when expressed individually and when cleaved from the viral polyprotein, is localized exclusively to the cytoplasm. Furthermore, NS3 appeared to be peripherally recruited to the RER and proteolytically active when NS2B was provided in trans. Thus, we provide evidence for a potential additional role for NS2B in not only serving as the cofactor for the NS3 protease, but also in recruiting NS3 from the cytoplasm to the RER for proper enzymatic activity. Results from our study suggest that targeting the interaction between NS2B and NS3 in disrupting the NS3 ER localization may be an attractive avenue for antiviral drug discovery.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1715
Author(s):  
Robin Park ◽  
Laercio Lopes ◽  
Anwaar Saeed

Advanced gastroesophageal cancer (GEC) has a poor prognosis and limited treatment options. Immunotherapy including the anti-programmed death-1 (PD-1) antibodies pembrolizumab and nivolumab have been approved for use in various treatment settings in GEC. Additionally, frontline chemoimmunotherapy regimens have recently demonstrated promising efficacy in large phase III trials and have the potential to be added to the therapeutic armamentarium in the near future. There are currently several immunotherapy biomarkers that are validated for use in the clinical setting for GEC including programmed death ligand-1 (PD-L1) expression as well as the tumor agnostic biomarkers such as mismatch repair or microsatellite instability (MMR/MSI) and tumor mutational burden (TMB). However, apart from MMR/MSI, these biomarkers are imperfect because none are highly sensitive nor specific. Therefore, there is an unmet need for immunotherapy biomarker development. To this end, several biomarkers are currently being evaluated in ongoing trials with some showing promising predictive potential. Here, we summarize the landscape of immunotherapy predictive biomarkers that are currently being evaluated in GEC.


2010 ◽  
Vol 112 (6) ◽  
pp. 1235-1239 ◽  
Author(s):  
Ming-Yuan Tseng ◽  
Peter J. Hutchinson ◽  
Peter J. Kirkpatrick

Object In a previous randomized controlled trial, the authors demonstrated that acute erythropoietin (EPO) therapy reduced severe vasospasm and delayed ischemic deficits (DIDs) following aneurysmal subarachnoid hemorrhage. In this study, the authors aimed to investigate the potential interaction of neurovascular protection by EPO with age, sepsis, and concurrent statin therapy. Methods The clinical events of 80 adults older than 18 years and with < 72 hours of aneurysmal subarachnoid hemorrhage, who were randomized to receive 30,000 U of intravenous EPO-β or placebo every 48 hours for a total of 3 doses, were analyzed by stratification according to age (< or ≥ 60 years), sepsis, or concomitant statin therapy. End points in the trial included cerebral vasospasm and impaired autoregulation on transcranial Doppler ultrasonography, DIDs, and unfavorable outcome at discharge and at 6 months measured with the modified Rankin Scale and Glasgow Outcome Scale. Analyses were performed using the t-test and/or ANOVA for repeated measurements. Results Younger patients (< 60 years old) or those without sepsis obtained benefits from EPO by a reduction in vasospasm, impaired autoregulation, and unfavorable outcome at discharge. Compared with nonseptic patients taking EPO, those with sepsis taking EPO had a lower absolute reticulocyte count (nonsepsis vs sepsis, 143.5 vs. 105.8 × 109/L on Day 6; p = 0.01), suggesting sepsis impaired both hematopoiesis and neurovascular protection by EPO. In the EPO group, none of the statin users suffered DIDs (p = 0.078), implying statins may potentiate neuroprotection by EPO. Conclusions Erythropoietin-related neurovascular protection appears to be attenuated by old age and sepsis and enhanced by statins, an important finding for designing Phase III trials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Goran Kokic ◽  
Hauke S. Hillen ◽  
Dimitry Tegunov ◽  
Christian Dienemann ◽  
Florian Seitz ◽  
...  

AbstractRemdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryo-electron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3ʹ-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3ʹ-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3ʹ-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication.


Sign in / Sign up

Export Citation Format

Share Document