scholarly journals Epigenetic regulation of innate immune memory in microglia

2021 ◽  
Author(s):  
Xiaoming Zhang ◽  
Laura Kracht ◽  
Antonio M Lerario ◽  
Marissa L Dubbelaar ◽  
Nieske Brouwer ◽  
...  

Microglia are the tissue-resident macrophages of the CNS. They originate in the yolk sac, colonize the CNS during embryonic development and form a self-sustaining population with limited turnover. A consequence of their relative slow turnover is that microglia can serve as a long-term memory for inflammatory or neurodegenerative events. We characterized the epigenomes and transcriptomes of microglia exposed to different stimuli; an endotoxin challenge (LPS) and genotoxic stress (DNA repair deficiency-induced accelerated aging). Whereas the enrichment of permissive epigenetic marks at enhancer regions explains training (hyperresponsiveness) of primed microglia to LPS challenge, the tolerized response of microglia seems to be regulated by loss of permissive epigenetic marks. Here, we identify that inflammatory stimuli and accelerated aging because of genotoxic stress activate distinct gene networks. These gene networks and associated biological processes are partially overlapping, which is likely driven by specific transcription factor networks, resulting in altered epigenetic signatures and distinct functional (desensitized vs. primed) microglia phenotypes.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 381-382
Author(s):  
Samantha N Barker ◽  
Treylr Jackson ◽  
John Richeson ◽  
Jeff A Carroll ◽  
Nicole C Burdick-Sanchez ◽  
...  

Abstract The objective of this study was to evaluate antioxidant capacity in plasma of beef calves challenged with LPS. Following an initial feeding period of 40 d, steers (n = 32; 379 kg ± 30.7) were transported to the Livestock Issues Research Unit’s Bovine Immunology Research and Development Complex and challenged intravenously with LPS (0.25 µg/kg BW) on d 41. Blood samples were collected via jugular catheter at -2, 0, 2, 4, 6, 8, 10, 12, 18, 24, 36 and 48 h relative to the LPS challenge at 0 h. Blood samples were processed to isolate plasma for indicators of oxidative stress with a colorimetric assay to determine ferric reducing antioxidant power (FRAP) values via concentration of ferrous iron (µM). Data were analyzed as repeated measures using the GLIMMIX procedure of SAS. Antioxidant values did vary with time (P < 0.001) being greater (P < 0.05) at -2, 0, 2, 36, and 48 h. Antioxidant capacity was reduced at 6 and 8 h (P < 0.05), with the least FRAP value observed at 8 h post-challenge. Antioxidant capacity increased (P < 0.05) again at 10 h, showing similar (P > 0.05) concentrations to those observed at 4 h. By 24 h post-challenge, plasma FRAP values increased (P < 0.05) similar to initial values at -2, 0, and 2 h. It can be inferred that oxidative stress contributes to reduced antioxidant capacity, ultimately interfering with animal growth and productivity. While these values reflect the oxidative stress response to an acute endotoxin challenge, and a subsequent recovery returning to homeostasis within 24 to 48 h, they may also correlate with other physiological and immunological indicators associated with an acute endotoxin challenge.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 284 ◽  
Author(s):  
Benjamin J. Swartzwelter ◽  
Francesco Barbero ◽  
Alessandro Verde ◽  
Maria Mangini ◽  
Marinella Pirozzi ◽  
...  

Innate immune memory is characterized by a modulation in the magnitude with which innate immune cells such as monocytes and macrophages respond to potential dangers, subsequent to previous exposure to the same or unrelated agents. In this study, we have examined the capacity of gold nanoparticles (AuNP), which are already in use for therapeutic and diagnostic purposes, to modulate the innate memory induced by bacterial agents. The induction of innate memory was achieved in vitro by exposing human primary monocytes to bacterial agents (lipopolysaccharide -LPS-, or live Bacille Calmette-Guérin -BCG) in the absence or presence of AuNP. After the primary activation, cells were allowed to return to a resting condition, and eventually re-challenged with LPS. The induction of memory was assessed by comparing the response to the LPS challenge of unprimed cells with that of cells primed with bacterial agents and AuNP. The response to LPS was measured as the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra). While ineffective in directly inducing innate memory per se, and unable to influence LPS-induced tolerance memory, AuNP significantly affected the memory response of BCG-primed cells, by inhibiting the secondary response in terms of both inflammatory and anti-inflammatory factor production. The reprogramming of BCG-induced memory towards a tolerance type of reactivity may open promising perspectives for the use of AuNP in immunomodulatory approaches to autoimmune and chronic inflammatory diseases.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1704
Author(s):  
Elisa Toppi ◽  
Veronica De Molfetta ◽  
Gianpaolo Zarletti ◽  
Massimo Tiberi ◽  
Paola Bossù ◽  
...  

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic, causing respiratory syndrome and other manifestations. The clinical consequences of the SARS-CoV-2 infection are highly heterogeneous, ranging from asymptomatic and mild to severe and fatal conditions, with the highest mortality rate reached among elderly people. Such heterogeneity appears strongly influenced by the host immune response, which in turn is profoundly affected by aging. In fact, the occurrence of a low-grade inflammation and a decline in specific immune defense is generally reported in older people. Although the low ability of B cells to provide primary and secondary specific responses with a consequent increase in susceptibility to and severity of virus infections is generally described in elderly people, we would like to present here the particular case of a 100-year-old woman, who recovered well from COVID-19 and developed a long-term memory against SARS-CoV-2. Following the infection, the patient’s blood was tested with both a classical ELISA and a specific Cell-ELISA addressed to measure the anti-spike S1 specific IgG released in plasma or produced in vitro by memory B cells, respectively. While showing negative on classical serological testing, the patient’s blood was positive in Cell-ELISA up to 1 year after the infection. Our observation highlights a potential mechanism of B cell-dependent, long-term protection in response to SARS-CoV-2 infection, suggesting that in a case of successful aging, the absence of specific antibodies in serum does not necessarily mean the absence of immune memory.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Jeffery A Carroll ◽  
Nicole C Burdick Sanchez ◽  
Paul R Broadway ◽  
Gleise M Silva ◽  
Juliana Ranches ◽  
...  

Abstract This study evaluated whether administration of lipopolysaccharide (LPS) at each trimester of gestation would alter the acute phase (APR) and metabolic responses to a postnatal LPS challenge in weaned heifers. Pregnant crossbred multiparous cows (n = 50) were randomized into prenatal immune stimulation (PIS; n = 24; administered 0.1 µg/kg BW LPS subcutaneously at 71 ± 2, 170 ± 2 and 234 ± 2 d of gestation) and saline (CON; n = 26) groups. From these treatment groups, heifer calves (n = 12 PIS and 11 CON) were identified at weaning (244 ± 3 d of age) to receive an LPS challenge. On d 0, heifers were fitted with vaginal temperature (VT) devices, jugular catheters, and moved into individual stalls. On d 1, heifers were challenged i.v. with LPS (0.5 µg/kg BW) at 0 h. Blood samples were collected and sickness behavior scores (SBS) recorded at 0.5 h intervals from −2 to 8 h and at 24 h relative to LPS challenge. Serum was analyzed for cortisol, cytokines, glucose, non-esterified fatty acids (NEFA), and serum urea nitrogen (SUN) concentrations. Baseline VT was lesser in PIS heifers from −11 to −5 h pre-LPS (treatment × time: P < 0.01) compared to the CON; however, the post-LPS VT response did not differ between treatments (P = 0.89). There was a treatment × time interaction (P < 0.01) for SBS with PIS heifers having lesser SBS from 0.5 to 2 h post-LPS compared to CON. There was a treatment × time interaction (P = 0.03) for cortisol with PIS heifers having greater cortisol at 0.5, 3, 3.5, 5.5 and 6.5 h post-LPS compared to CON. There were treatment × time interactions for the post-LPS cytokine responses (P ≤ 0.05). Specifically, PIS heifers had greater TNF-α from 1.5 to 2 h, yet less TNF-α at 3 h than CON (P < 0.01), and PIS heifers had greater IFN-γ from 3.5 to 5.5 h post-LPS than CON (P < 0.01). In contrast, IL-6 was less in PIS than CON heifers from 1.5 to 8 h post-LPS (P < 0.001). Glucose concentrations were greater in PIS heifers at −1 h, but less at 2, 3 and 5.5 h compared to CON (treatment × time: P < 0.01). Serum NEFA concentrations were greater (P = 0.04) in PIS than CON heifers. There was a treatment × time interaction (P < 0.01) for SUN with PIS heifers having greater SUN concentrations at −2, −1.5, 2, 3, 6.5 and 24 h than CON. These data demonstrate that in utero exposure to multiple low doses of endotoxin has lasting physiological and immunological effects when the offspring encounter a similar postnatal immunological insult.


2021 ◽  
Vol 12 ◽  
Author(s):  
Giacomo Della Camera ◽  
Mariusz Madej ◽  
Anna Maria Ferretti ◽  
Rita La Spina ◽  
Yang Li ◽  
...  

Engineered nanoparticles used for medical purposes must meet stringent safety criteria, which include immunosafety, i.e., the inability to activate possibly detrimental immune/inflammatory effects. Even medical nanomaterials devoid of direct immunotoxic or inflammatory effects may have an impact on human health if able to modify innate memory, which is the ability to “prime” future immune responses towards a different, possibly more detrimental reactivity. Although innate memory is usually protective, anomalous innate memory responses may be at the basis of immune pathologies. In this study, we have examined the ability of two nanomaterials commonly used for diagnostic imaging purposes, gold and iron oxide nanoparticles, to induce or modulate innate memory, using an in vitro model based on human primary monocytes. Monocytes were exposed in culture to nanoparticles alone or together with the bacterial agent LPS (priming phase/primary response), then rested for six days (extinction phase), and eventually challenged with LPS (memory/secondary response). The memory response to the LPS challenge was measured as changes in the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra), as compared to unprimed monocytes. The results show that both types of nanoparticles can have an effect in the induction of memory, with changes observed in the cytokine production. By comparing nanomaterials of different shapes (spherical vs. rod-shaped gold particles) and different size (17 vs. 22 nm diameter spherical iron oxide particles), it was evident that innate memory could be differentially induced and modulated depending on size, shape and chemical composition. However, the main finding was that the innate memory effect of the particles was strongly donor-dependent, with monocytes from each donor showing a distinct memory profile upon priming with the same particles, thereby making impossible to draw general conclusions on the particle effects. Thus, in order to predict the effect of imaging nanoparticles on the innate memory of patients, a personalised profiling would be required, able to take in consideration the peculiarities of the individual innate immune reactivity.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Fatima Haider ◽  
Amir Sultan ◽  
Hassan Ahmed Khan

The immune system also called as the defense system involves many different cells that workas soldiers in an individual. These immune cells provide protection against various pathogens.For better protection of an individual the immune systems has the ability to memorize orremember the pathogen. This ability is known as immunological memory. With the help ofimmunological memory the immune memory cells remember the antigen and are prepared ifthere is an encounter with the antigen in future. The immunological memory can be developedagainst certain strains with the help of different types of vaccines. Such types of vaccinesthat are currently being used to save lives are, Live attenuated vaccines, Toxoid vaccines,Subunit vaccines, Glyco-conjugated vaccines, and Killed/Inactivated vaccines. These vaccineshow different efficiency. Hence, the immunological memory generated after a singlevaccination may wear off with time. Multiple numbers of shots are required for thedevelopment of long term memory. All these types of vaccines vary from each other in theirmanufacturing and also in their mechanism of providing long term immunological memory.They show many pros and cons but their advantages are greater than their disadvantages.Thus, are preferred to be used for the betterment of mankind.


1999 ◽  
Vol 277 (6) ◽  
pp. G1281-G1287 ◽  
Author(s):  
Eva Dickinson ◽  
Recep Tuncer ◽  
Evan Nadler ◽  
Patricia Boyle ◽  
Sean Alber ◽  
...  

Endotoxemia promotes gut barrier failure and bacterial translocation (BT) by upregulating inducible nitric oxide synthase (iNOS) in the gut. We hypothesized that administration of a dithiocarbamate derivative, NOX, which scavenges nitric oxide (NO), may reduce intestinal injury and BT after lipopolysaccharide (LPS) challenge. Sprague-Dawley rats were randomized to receive NOX or normal saline via subcutaneously placed osmotic pumps before or after LPS challenge. Mesenteric lymph nodes, liver, spleen, and blood were cultured 24 h later. Transmucosal passage of Escherichia coli C-25or fluorescent beads were measured in an Ussing chamber. Intestinal membranes were examined morphologically for apoptosis, iNOS expression, and nitrotyrosine immunoreactivity. NOX significantly reduced the incidence of bacteremia, BT, and transmucosal passage of bacteria and beads when administered before or up to 12 h after LPS challenge. LPS induced enterocyte apoptosis at the villus tips where bacterial entry was demonstrated by confocal microscopy. NOX significantly decreased the number of apoptotic nuclei and nitrotyrosine residues. NOX prevents LPS-induced gut barrier failure by scavenging NO and its toxic derivative, peroxynitrite.


2003 ◽  
Vol 285 (6) ◽  
pp. H2500-H2509 ◽  
Author(s):  
Leslie B. Garner ◽  
Monte S. Willis ◽  
Deborah L. Carlson ◽  
J. Michael DiMaio ◽  
Michael D. White ◽  
...  

Macrophage migration inhibitory factor (MIF) is a pluripotent proinflammatory cytokine that is ubiquitously expressed in organs, including the heart. However, no specific role for MIF in modulating cardiac performance has yet been described. Therefore, we examined cardiac MIF expression in mice after LPS challenge (4 mg/kg) and tested the hypothesis that MIF is a mediator of LPS-induced cardiac dysfunction. Western blots of whole heart lysates, as well as immunohistochemistry, documented constitutive MIF protein expression in the heart. Cardiac MIF protein levels significantly decreased after LPS challenge, reaching a nadir at 12 h, and then returned to baseline by 24 h. This pattern was consistent with MIF release from cytoplasmic stores after endotoxin challenge. After release of protein, MIF mRNA levels increased 24–48 h postchallenge. To determine the functional consequences of MIF release, we treated LPS-challenged mice with anti-MIF neutralizing antibodies or isotype control antibodies. Anti-MIF-treated animals had significantly improved cardiac function, as evidenced by a significant improvement in left ventricular (LV) fractional shortening percentage at 8, 12, 24, and 48 h after endotoxin challenge. In support of these findings, perfusion of isolated beating mouse hearts (Langendorff preparation) with recombinant MIF (20 ng/ml) led to a significant decrease in both systolic and diastolic performance [LV pressure (LVP), positive and negative first derivative of LVP with respect to time, and rate of LVP rise at developed pressure of 40 mmHg]. This study demonstrates that MIF mediates LPS-induced cardiac dysfunction and suggests that MIF should be considered a pharmacological target for the treatment of cardiac dysfunction in sepsis and potentially other cardiac diseases.


2001 ◽  
Vol 281 (1) ◽  
pp. G173-G181 ◽  
Author(s):  
Evan P. Nadler ◽  
Eva C. Dickinson ◽  
Donna Beer-Stolz ◽  
Sean M. Alber ◽  
Simon C. Watkins ◽  
...  

Sustained upregulation of inducible nitric oxide (NO) synthase in the liver after endotoxin [lipopolysaccharide (LPS)] challenge may result in hepatocellular injury. We hypothesized that administration of a NO scavenger, NOX, may attenuate LPS-induced hepatocellular injury. Sprague-Dawley rats received NOX or saline via subcutaneous osmotic pumps, followed 18 h later by LPS challenge. Hepatocellular injury was assessed using biochemical assays, light, and transmission electron microscopy (TEM). Interleukin (IL)-6 mRNA was measured by RT-PCR. Tumor necrosis factor (TNF)-α protein expression was determined by immunohistochemistry. NOX significantly reduced serum levels of ornithine carbamoyltransferase and aspartate aminotransferase. TNF-α and IL-6 expression were increased in the livers of saline-treated but not NOX-treated rats. Although there was no difference between groups by light microscopy, TEM revealed obliteration of the space of Disse in saline-treated but not in NOX-treated animals. Electron paramagnetic resonance showed the characteristic mononitrosyl complex in NOX-treated rats. We conclude that NOX reduces hepatocellular injury after endotoxemia. NOX may be useful in the management of hepatic dysfunction secondary to sepsis or other diseases associated with excessive NO production.


2020 ◽  
Vol 117 (10) ◽  
pp. 5144-5151 ◽  
Author(s):  
Serena Bradde ◽  
Armita Nourmohammad ◽  
Sidhartha Goyal ◽  
Vijay Balasubramanian

Some bacteria and archaea possess an immune system, based on the CRISPR-Cas mechanism, that confers adaptive immunity against viruses. In such species, individual prokaryotes maintain cassettes of viral DNA elements called spacers as a memory of past infections. Typically, the cassettes contain several dozen expressed spacers. Given that bacteria can have very large genomes and since having more spacers should confer a better memory, it is puzzling that so little genetic space would be devoted by prokaryotes to their adaptive immune systems. Here, assuming that CRISPR functions as a long-term memory-based defense against a diverse landscape of viral species, we identify a fundamental tradeoff between the amount of immune memory and effectiveness of response to a given threat. This tradeoff implies an optimal size for the prokaryotic immune repertoire in the observational range.


Sign in / Sign up

Export Citation Format

Share Document