scholarly journals Colocalized, Bidirectional Optogenetic Modulations in Freely Behaving Animals with a Wireless Dual-Color Optoelectronic Probe

2021 ◽  
Author(s):  
Xing Sheng

The precise control of neural activities at both cellular and circuit levels reveals significant impacts on the fundamental neuroscience explorations and medical applications. Optogenetic methods provide efficient cell-specific modulations, but state-of-the-art technologies lack the ability of simultaneous neural activation and inhibition in a same brain region of freely moving animals. Here we report bidirectional neuronal activity manipulation accomplished by a wireless, dual-color optogenetic probe in synergy with the co-expression of two spectrally distinct opsins (ChrimsonR and stGtACR2) in a rodent model. Based on vertically assembled, thin-film microscale light-emitting diodes (micro-LEDs) on flexible substrates, the dual-color probe shows colocalized red and blue emissions and allows chronic in vivo operations with desirable biocompatibilities. In addition, we discover that neurons co-expressing the two opsins can be deterministically evoked or silenced under red or blue irradiations. Implanted in behaving mice, the wirelessly controlled dual-color probe interferes with dopaminergic neurons in the ventral tegmental area (VTA), increasing or decreasing dopamine levels with colocalized red and blue stimulations. Such bidirectional regulations further generate rewarding and aversive behaviors of freely moving animals in a place preference test. The technologies established here will create numerous opportunities and profound implications for the brain research.

2021 ◽  
pp. 074873042110628
Author(s):  
Blanca Martin-Burgos ◽  
Wanqi Wang ◽  
Ivana William ◽  
Selma Tir ◽  
Innus Mohammad ◽  
...  

Circadian rhythms are driven by daily oscillations of gene expression. An important tool for studying cellular and tissue circadian rhythms is the use of a gene reporter, such as bioluminescence from the reporter gene luciferase controlled by a rhythmically expressed gene of interest. Here we describe methods that allow measurement of circadian bioluminescence from a freely moving mouse housed in a standard cage. Using a LumiCycle In Vivo (Actimetrics), we determined conditions that allow detection of circadian rhythms of bioluminescence from the PER2 reporter, PER2::LUC, in freely behaving mice. The LumiCycle In Vivo applies a background subtraction that corrects for effects of room temperature on photomultiplier tube (PMT) output. We tested delivery of d-luciferin via a subcutaneous minipump and in the drinking water. We demonstrate spikes in bioluminescence associated with drinking bouts. Further, we demonstrate that a synthetic luciferase substrate, CycLuc1, can support circadian rhythms of bioluminescence, even when delivered at a lower concentration than d-luciferin, and can support longer-term studies. A small difference in phase of the PER2::LUC bioluminescence rhythms, with females phase leading males, can be detected with this technique. We share our analysis scripts and suggestions for further improvements in this method. This approach will be straightforward to apply to mice with tissue-specific reporters, allowing insights into responses of specific peripheral clocks to perturbations such as environmental or pharmacological manipulations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Venus N. Sherathiya ◽  
Michael D. Schaid ◽  
Jillian L. Seiler ◽  
Gabriela C. Lopez ◽  
Talia N. Lerner

AbstractFiber photometry (FP) is an adaptable method for recording in vivo neural activity in freely behaving animals. It has become a popular tool in neuroscience due to its ease of use, low cost, the ability to combine FP with freely moving behavior, among other advantages. However, analysis of FP data can be challenging for new users, especially those with a limited programming background. Here, we present Guided Photometry Analysis in Python (GuPPy), a free and open-source FP analysis tool. GuPPy is designed to operate across computing platforms and can accept data from a variety of FP data acquisition systems. The program presents users with a set of graphic user interfaces (GUIs) to load data and provide input parameters. Graphs are produced that can be easily exported for integration into scientific figures. As an open-source tool, GuPPy can be modified by users with knowledge of Python to fit their specific needs.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 248
Author(s):  
Ryan C. Ashbaugh ◽  
Lalita Udpa ◽  
Ron R. Israeli ◽  
Assaf A. Gilad ◽  
Galit Pelled

Magnetogenetics is a new field that utilizes electromagnetic fields to remotely control cellular activity. In addition to the development of the biological genetic tools, this approach requires designing hardware with a specific set of demands for the electromagnets used to provide the desired stimulation for electrophysiology and imaging experiments. Here, we present a universal stimulus delivery system comprising four magnet designs compatible with electrophysiology, fluorescence and luminescence imaging, microscopy, and freely behaving animal experiments. The overall system includes a low-cost stimulation controller that enables rapid switching between active and sham stimulation trials as well as precise control of stimulation delivery thereby enabling repeatable and reproducible measurements.


2020 ◽  
Author(s):  
Changbo Liu ◽  
Yu Zhao ◽  
Xue Cai ◽  
Yang Xie ◽  
Taoyi Wang ◽  
...  

ABSTRACTPhysical and chemical technologies have been continuously progressing advances of neuroscience research. The development of research tools for closed-loop control and monitoring neural activities in behaving animals is highly desirable. In this paper, we introduce a wirelessly operated, miniaturized microprobe system for optical interrogation and neurochemical sensing in the deep brain. Via epitaxial liftoff and transfer printing, microscale light emitting diodes (micro-LEDs) as light sources, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) coated diamond films as electrochemical sensors are vertically assembled to form implantable optoelectrochemical probes, for real-time optogenetic stimulation and dopamine detection capabilities. A customized, lightweight circuit module is employed for untethered, remote signal control and data acquisition. Injected into the ventral tegmental area (VTA) of freely behaving mice, in vivo experiments clearly demonstrate the utilities of the multifunctional optoelectrochemical microprobe system for optogenetic interference of place preferences and detection of dopamine release. The presented options for material and device integrations provide a practical route to simultaneous optical control and electrochemical sensing of complex nervous systems.


2020 ◽  
Author(s):  
B. Martin-Burgos ◽  
W. Wang ◽  
I. William ◽  
S. Tir ◽  
I. Mohammad ◽  
...  

AbstractCircadian rhythms are driven by daily oscillations of gene expression. An important tool for studying cellular and tissue rhythms is the use of a gene reporter, such as bioluminescence from the reporter gene luciferase controlled by a rhythmically expressed gene of interest. Here we describe methods that allow measurement of bioluminescence from a freely-moving mouse housed in a standard cage. Using a LumiCycle In Vivo (Actimetrics), we determined conditions that allow detection of circadian rhythms of bioluminescence from the PER2 reporter, PER2::LUC, in freely behaving mice. We tested delivery of D-luciferin via a subcutaneous minipump and in the drinking water. Further, we demonstrate that a synthetic luciferase substrate, CycLuc1, can support circadian rhythms of bioluminescence, even when delivered at a lower concentration than D-luciferin. We share our analysis scripts and suggestions for further improvements in this method. This approach will be straightforward to apply to mice with tissue-specific reporters, allowing insights into responses of specific peripheral clocks to perturbations such as environmental or pharmacological manipulations.


2021 ◽  
Author(s):  
Venus N Sherathiya ◽  
Michael D Schaid ◽  
Jillian L Seiler ◽  
Gabriela C Lopez ◽  
Talia Lerner

Fiber photometry (FP) is an adaptable method for recording in vivo neural activity in freely behaving animals. It has become a popular tool in neuroscience due to its ease of use, low cost, the ability to combine FP with freely moving behavior, among other advantages. However, analysis of FP data can be a challenge for new users, especially those with a limited programming background. Here, we present Guided Photometry Analysis in Python (GuPPy), a free and open-source FP analysis tool. GuPPy is provided as a Jupyter notebook, a well-commented interactive development environment (IDE) designed to operate across platforms. GuPPy presents the user with a set of graphic user interfaces (GUIs) to load data and provide input parameters. Graphs produced by GuPPy can be exported into various image formats for integration into scientific figures. As an open-source tool, GuPPy can be modified by users with knowledge of Python to fit their specific needs.


Author(s):  
Wei-Wei Zhang ◽  
Rong-Rong Li ◽  
Jie Zhang ◽  
Jie Yan ◽  
Qian-Hui Zhang ◽  
...  

AbstractWhile the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 725
Author(s):  
Saeyeong Jeon ◽  
Youjin Lee ◽  
Daeho Ryu ◽  
Yoon Kyung Cho ◽  
Yena Lee ◽  
...  

During the last decade, optogenetics has become an essential tool for neuroscience research due to its unrivaled feature of cell-type-specific neuromodulation. There have been several technological advances in light delivery devices. Among them, the combination of optogenetics and electrophysiology provides an opportunity for facilitating optogenetic approaches. In this study, a novel design of an optrode array was proposed for realizing optical modulation and electrophysiological recording. A 4 × 4 optrode array and five-channel recording electrodes were assembled as a disposable part, while a reusable part comprised an LED (light-emitting diode) source and a power line. After the characterization of the intensity of the light delivered at the fiber tips, in vivo animal experiment was performed with transgenic mice expressing channelrhodopsin, showing the effectiveness of optical activation and neural recording.


1989 ◽  
Vol 257 (3) ◽  
pp. E336-E339 ◽  
Author(s):  
A. Uehara ◽  
Y. Habara ◽  
A. Kuroshima ◽  
C. Sekiya ◽  
Y. Takasugi ◽  
...  

We have recently reported that chronically repeated restraint stress results in improved cold tolerance in rats via an increased activity of nonshivering thermogenesis, a characteristic metabolic change observed during cold adaptation, suggesting the presence of cross-adaptation between cold and stress. It is well established that the hypothalamic-pituitary-adrenal (HPA) axis is activated in various stress responses. In the present study, therefore, we examined whether cold adaptation would alter the adrenocorticotropic hormone (ACTH)-releasing state in vivo using freely moving, conscious rats chronically implanted with intra-atrial cannulas. There was no difference in the basal levels of plasma ACTH between warm control and cold-adapted rats. On the other hand, the ACTH response to the intravenous administration of corticotropin-releasing factor (CRF; 2 micrograms/animal) was significantly elevated in cold-adapted rats. However, the injection of 10 micrograms of CRF, which was considered as a dose to elicit the maximal ACTH response, resulted in similar ACTH release patterns between the two groups. These changes in the responsiveness of ACTH secretion have been observed in rats chronically exposed to stressful conditions. The results demonstrated in the present study, therefore, provide further evidence for our hypothesis that there may exist cross-adaptation between cold and nonthermal stress.


1994 ◽  
Vol 645 (1-2) ◽  
pp. 150-156 ◽  
Author(s):  
Alain M. Gardier ◽  
Sébastien Kachaner ◽  
Elisabeth Khan Shaghaghi ◽  
Christian Blot ◽  
Claude Bohuon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document