scholarly journals Postnatal lymph node expansion of stromal progenitors towards reticular and CD34+ stromal cell subsets is determined by distinct transcriptional programs

2021 ◽  
Author(s):  
Joern Pezoldt ◽  
Carolin Wiechers ◽  
Maria Litovchenko ◽  
Marjan Biocanin ◽  
Mangge Zou ◽  
...  

Gut-draining mesenteric lymph nodes (mLN) provide the framework and microenvironment to shape intestinal adaptive immune responses. We previously delineated transcriptional signatures in LN stromal cells (SC), pointing to tissue-specific variability in composition and immuno-modulatory function of SCs. Here, we dissect the tissue-specific epigenomic DNA accessibility and CpG methylation landscape of LN non-endothelial SCs and identify a microbiota-independent core epigenomic signature of LN SCs. By combined analysis of transcription factor (TF) binding sites together with the gene expression profiles of non-endothelial SCs, we delineated TFs poising skin-draining peripheral LN (pLN) SCs for pro-inflammatory responses. Furthermore, using scRNA-seq, we dissected the developmental trajectory of mLN SCs derived from postnatal to aged mice, identifying two distinct putative progenitors, namely CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors, which both feed the rapid postnatal LN expansion. Finally, we identified Irf3 as a key differentiation TF inferred from the epigenomic signature of mLN SCs that is dynamically expressed along the differentiation trajectories of FRCs, and validated Irf3 as a regulator of Cxcl9+ FRC differentiation. Together, our data constitute a comprehensive transcriptional and epigenomic map of mLN development and dissect location-specific, microbiota-independent properties of mLN non-endothelial SCs. As such, our findings represent a valuable resource to identify core transcriptional regulators that impinge on the developing mLN early in life, thereby shaping long-lasting intestinal adaptive immune responses.

2021 ◽  
Author(s):  
Joern Pezoldt ◽  
Carolin Wiechrs ◽  
Maria Litovchenko ◽  
Marjan Biočanin ◽  
Mangge Zou ◽  
...  

Abstract Gut-draining mesenteric lymph nodes (mLN) provide the framework and microenvironment to shape intestinal adaptive immune responses. We previously delineated transcriptional signatures in LN stromal cells (SC), pointing to tissue-specific variability in composition and immuno-modulatory function of SCs. Here, we dissect the tissue-specific epigenomic DNA accessibility and CpG methylation landscape of LN non-endothelial SCs and identify a microbiota-independent core epigenomic signature of LN SCs. By combined analysis of transcription factor (TF) binding sites together with the gene expression profiles of non-endothelial SCs, we delineated TFs poising skin-draining peripheral LN (pLN) SCs for pro-inflammatory responses. Furthermore, using scRNA-seq, we dissected the developmental trajectory of mLN SCs derived from postnatal to aged mice, identifying two distinct putative progenitors, namely CD34+SC and fibroblastic reticular stromal cell (FRC) progenitors, which both feed the rapid postnatal LN expansion. Finally, we identified Irf3 as a key differentiation TF inferred from the epigenomic signature of mLN SCs that is dynamically expressed along the differentiation trajectories of FRCs, and validated Irf3 as a regulator of Cxcl9+ FRC differentiation. Together, our data constitute a comprehensive transcriptional and epigenomic map of mLN development and dissect location-specific, microbiota-independent properties of mLN non-endothelial SCs. As such, our findings represent a valuable resource to identify core transcriptional regulators that impinge on the developing mLN early in life, thereby shaping long-lasting intestinal adaptive immune responses.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Qin Zhao ◽  
Miusi Shi ◽  
Chengcheng Yin ◽  
Zifan Zhao ◽  
Jinglun Zhang ◽  
...  

AbstractThe immune response of a biomaterial determines its osteoinductive effect. Although the mechanisms by which some immune cells promote regeneration have been revealed, the biomaterial-induced immune response is a dynamic process involving multiple cells. Currently, it is challenging to accurately regulate the innate and adaptive immune responses to promote osteoinduction in biomaterials. Herein, we investigated the roles of macrophages and dendritic cells (DCs) during the osteoinduction of biphasic calcium phosphate (BCP) scaffolds. We found that osteoinductive BCP directed M2 macrophage polarization and inhibited DC maturation, resulting in low T cell response and efficient osteogenesis. Accordingly, a dual-targeting nano-in-micro scaffold (BCP loaded with gold nanocage, BCP-GNC) was designed to regulate the immune responses of macrophages and DCs. Through a dual-wavelength photosensitive switch, BCP-GNC releases interleukin-4 in the early stage of osteoinduction to target M2 macrophages and then releases dexamethasone in the later stage to target immature DCs, creating a desirable inflammatory environment for osteogenesis. This study demonstrates that biomaterials developed to have specific regulatory capacities for immune cells can be used to control the early inflammatory responses of implanted materials and induce osteogenesis.


2020 ◽  
Vol 217 (4) ◽  
Author(s):  
Lan Kang ◽  
Xiang Zhang ◽  
Liangliang Ji ◽  
Tiantian Kou ◽  
Sinead M. Smith ◽  
...  

Macrophages play pleiotropic roles in maintaining the balance between immune tolerance and inflammatory responses in the gut. Here, we identified transcription factor RBP-J as a crucial regulator of colonic macrophage–mediated immune responses against the enteric pathogen Citrobacter rodentium. In the immune response phase, RBP-J promoted pathogen clearance by enhancing intestinal macrophage-elicited Th17 cell immune responses, which was achieved by maintenance of C/EBPβ-dependent IL-6 production by overcoming miRNA-17∼92–mediated suppressive effects. RBP-J deficiency–associated phenotypes could be genetically corrected by further deleting miRNA-17∼92 in macrophages. In the late phase, noneradicated pathogens in RBP-J KO mice recruited abundant IL-1β–expressing CD64+Ly6C+ colonic macrophages and thereby promoted persistence of ILC3-derived IL-22 to compensate for the impaired innate and adaptive immune responses, leading to ultimate clearance of pathogens. These results demonstrated that colonic macrophage–intrinsic RBP-J dynamically orchestrates intestinal immunity against pathogen infections by interfacing with key immune cells of T and innate lymphoid cell lineages.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251885
Author(s):  
Lauryn Samelko ◽  
Marco Caicedo ◽  
Kyron McAllister ◽  
Joshua Jacobs ◽  
Nadim James Hallab

It is widely recognized that innate macrophage immune reactions to implant debris are central to the inflammatory responses that drive biologic implant failure over the long term. Less common, adaptive lymphocyte immune reactions to implant debris, such as delayed type hypersensitivity (DTH), can also affect implant performance. It is unknown which key patient factors, if any, mediate these adaptive immune responses that potentiate particle/macrophage mediated osteolysis. The objective of this investigation was to determine to what degree known adaptive immune responses to metal implant debris can affect particle-induced osteolysis (PIO); and if this pathomechanism is dependent on: 1) innate immune danger signaling, i.e., NLRP3 inflammasome activity, 2) sex, and/or 3) age. We used an established murine calvaria model of PIO using male and female wild-type C57BL/6 vs. Caspase-1 deficient mice as well as young (12–16 weeks old) vs. aged (18–24 months old) female and male C57BL/6 mice. After induction of metal-DTH, and Cobalt-alloy particle (ASTM F-75, 0.4um median diameter) calvaria challenge, bone resorption was assessed using quantitative micro-computed tomography (micro-CT) analysis and immune responses were assessed by measuring paw inflammation, lymphocyte transformation test (LTT) reactivity and adaptive immune cytokines IFN-gamma and IL-17 (ELISA). Younger aged C57BL/6 female mice exhibited the highest rate and severity of metal sensitivity lymphocyte responses that also translated into higher PIO compared to any other experimental group. The absence of inflammasome/caspase-1 activity significantly suppressed DTH metal-reactivity and osteolysis in both male and female Caspase-1 deficient mice. These murine model results indicate that young female mice are more predisposed to metal-DTH augmented inflammatory responses to wear debris, which is highly influenced by active NLRP3 inflammasome/caspase-1 danger signaling. If these results are clinically meaningful for orthopedic patients, then younger female individuals should be appropriately assessed and followed for DTH derived peri-implant complications.


2021 ◽  
Author(s):  
◽  
Kerry Hilligan

<p>Antigen presenting cells (APC) including dendritic cells (DC) play a key role in the initiation and direction of adaptive immune responses. Acting as sentinels in the tissue, DC sample antigen and traffic to the local lymph node where they present antigen to naïve T cells. The signals DC provide to naïve T cells determines the functional fate of the T cell and therefore, the type of immune response generated. At mucosal sites, such as the intestine, immune responses need to be carefully regulated due to the high antigenic load. For this reason, intestinal immune cells are highly specialised to prevent immune activation to innocuous antigens while still holding the capacity to induce potent responses to pathogenic microbes and helminths. Oral administration of antigen is associated with tolerance and the generation of FoxP3+ regulatory T cells (Tregs). Specialised lamina propria (LP) resident APC are required for the initiation of Treg differentiation in the mesenteric lymph nodes (MLN) through production of chemical mediators such as retinoic acid (RA). Ablation of these populations or restricted trafficking prevents the development of Tregs in mouse models thus supporting the essential role of APC in maintaining intestinal homeostasis. During infection, APC promote the induction of adaptive immune responses which neutralise threats. However, the APC subsets involved in this are not well defined. Pathologies such as food allergy and inflammatory bowel disease are thought to arise due to the development of aberrant immune responses. Food allergy can be modelled in mice using the mucosal adjuvant cholera toxin (CT) which has been shown to drive immunity to co-delivered antigens and is associated with the generation of IL-4 producing T helper 2 cells. Understanding the APC subsets involved in the initiation of intestinal immune responses could help in the development of targeted therapies for inflammatory bowel conditions. In this thesis, I show that oral administration of CT is followed by the appearance of a novel phenotype of DC in the intestinal LP and MLN. These DC differ functionally from DC at steady-state and may contribute to the generation of IL-4 producing T cells observed in the LP, MLN and spleen following oral administration of CT.</p>


2009 ◽  
Vol 206 (13) ◽  
pp. 3101-3114 ◽  
Author(s):  
Olga Schulz ◽  
Elin Jaensson ◽  
Emma K. Persson ◽  
Xiaosun Liu ◽  
Tim Worbs ◽  
...  

Chemokine receptor CX3CR1+ dendritic cells (DCs) have been suggested to sample intestinal antigens by extending transepithelial dendrites into the gut lumen. Other studies identified CD103+ DCs in the mucosa, which, through their ability to synthesize retinoic acid (RA), appear to be capable of generating typical signatures of intestinal adaptive immune responses. We report that CD103 and CX3CR1 phenotypically and functionally characterize distinct subsets of lamina propria cells. In contrast to CD103+ DC, CX3CR1+ cells represent a nonmigratory gut-resident population with slow turnover rates and poor responses to FLT-3L and granulocyte/macrophage colony-stimulating factor. Direct visualization of cells in lymph vessels and flow cytometry of mouse intestinal lymph revealed that CD103+ DCs, but not CX3CR1-expressing cells, migrate into the gut draining mesenteric lymph nodes (LNs) under steady-state and inflammatory conditions. Moreover, CX3CR1+ cells displayed poor T cell stimulatory capacity in vitro and in vivo after direct injection of cells into intestinal lymphatics and appeared to be less efficient at generating RA compared with CD103+ DC. These findings indicate that selectively CD103+ DCs serve classical DC functions and initiate adaptive immune responses in local LNs, whereas CX3CR1+ populations might modulate immune responses directly in the mucosa and serve as first line barrier against invading enteropathogens.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Young-Su Yi ◽  
Young-Jin Son ◽  
Chongsuk Ryou ◽  
Gi-Ho Sung ◽  
Jong-Hoon Kim ◽  
...  

Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gang Liu ◽  
Subhashini Arimilli ◽  
Evan Savage ◽  
G. L. Prasad

Abstract Cigarette smoke-induced chronic inflammation is associated with compromised immune responses. To understand how tobacco products impact immune responses, we assessed transcriptomic profiles in peripheral blood mononuclear cells (PBMCs) pretreated with Whole Smoke-Conditioned Medium (WS-CM) or Smokeless Tobacco Extracts (STE), and stimulated with lipopolysaccharide, phorbol myristate and ionomycin (agonists). Gene expression profiles from PBMCs treated with low equi-nicotine units (0.3 μg/mL) of WS-CM and one high dose of STE (100 μg/mL) were similar to those from untreated controls. Cells treated with medium and high doses of WS-CM (1.0 and 3.0 μg/mL) exhibited significantly different gene expression profiles compared to the low WS-CM dose and STE. Pre-treatment with higher doses of WS-CM inhibited the expression of several pro-inflammatory genes (IFNγ, TNFα, and IL-2), while CSF1-R and IL17RA were upregulated. Pre-treatment with high doses of WS-CM abolished agonist-stimulated secretion of IFNγ, TNF and IL-2 proteins. Pathway analyses revealed that higher doses of WS-CM inhibited NF-ĸB signaling, immune cell differentiation and inflammatory responses, and increased apoptotic pathways. Our results show that pre-treatment of PBMCs with higher doses of WS-CM inhibits immune activation and effector cytokine expression and secretion, resulting in a reduced immune response, whereas STE exerted minimal effects.


2021 ◽  
Vol 4 (2) ◽  
pp. 8011-8019
Author(s):  
Giovanna Ganem Favero ◽  
Isabela Lopes Martin ◽  
Fernanda Pereira da Silva Albino ◽  
Carlos Eduardo Fontana ◽  
Sérgio Luiz Pinheiro ◽  
...  

Leptin is a hormone synthesized predominantly by white adipose tissue. Its production levels are directly proportional to the total mass of this tissue in an individual’s body. Apart from its classic role in the regulation of hunger and satiety, it also plays an important part in scenarios involving innate and adaptive immune responses. It has been discovered that leptin levels are altered in a variety of inflammatory responses, such as periodontitis, a condition which derives from a persistent inflammatory immune response from a host facing bacterial infection. The initial trigger for this reaction is the recognition of the pathogens by antigen presenting cells, such as macrophages and dendritic cells, whose actions can be influenced by leptin. This review aims to present the relationship between leptin, dendritic cells and macrophages in the context of periodontal disease. Thus, we have assembled the most important findings related to leptin’s role in the modulation of the immune response carried out by these cells in periodontitis.


Sign in / Sign up

Export Citation Format

Share Document