scholarly journals The impact of co-circulating pathogens on SARS-CoV-2/COVID-19 surveillance. How concurrent epidemics may decrease true SARS-CoV-2 percent positivity.

Author(s):  
Aleksandra Kovacevic ◽  
Rosalind M Eggo ◽  
Marc Baguelin ◽  
Matthieu Domenech de Cellès ◽  
Lulla Opatowski

Background: Circulation of non-SARS-CoV-2 respiratory viruses during the COVID-19 pandemic may alter quality of COVID-19 surveillance, with possible consequences for real-time analysis and delay in implementation of control measures. Here, we assess the impact of an increased circulation of other respiratory viruses on the monitoring of positivity rates of SARS-CoV-2 and interpretation of surveillance data. Methods: Using a multi-pathogen Susceptible-Exposed-Infectious-Recovered (SEIR) transmission model formalizing co-circulation of SARS-CoV-2 and another respiratory we assess how an outbreak of secondary virus may inflate the number of SARS-CoV-2 tests and affect the interpretation of COVID-19 surveillance data. Using simulation, we assess to what extent the use of multiplex PCR tests on a subsample of symptomatic individuals can support correction of the observed SARS-CoV-2 percent positive during other virus outbreaks and improve surveillance quality. Results: Model simulations demonstrated that a non-SARS-CoV-2 epidemic creates an artificial decrease in the observed percent positivity of SARS-CoV-2, with stronger effect during the growth phase, until the peak is reached. We estimate that performing one multiplex test for every 1,000 COVID-19 tests on symptomatic individuals could be sufficient to maintain surveillance of other respiratory viruses in the population and correct the observed SARS-CoV-2 percent positive. Conclusions: This study highlights that co-circulating respiratory viruses can disrupt SARS-CoV-2 surveillance. Correction of the positivity rate can be achieved by using multiplex PCR, and a low number of samples is sufficient to avoid bias in SARS-CoV-2 surveillance.

Author(s):  
Aleksandra Kovacevic ◽  
Rosalind M Eggo ◽  
Marc Baguelin ◽  
Matthieu Domenech de Cellès ◽  
Lulla Opatowski

Abstract Background Circulation of seasonal non-SARS-CoV-2 respiratory viruses with syndromic overlap during the COVID-19 pandemic may alter quality of COVID-19 surveillance, with possible consequences for real-time analysis and delay in implementation of control measures. Methods Using a multi-pathogen Susceptible-Exposed-Infectious-Recovered (SEIR) transmission model formalizing co-circulation of SARS-CoV-2 and another respiratory virus, we assess how an outbreak of secondary virus may affect two COVID-19 surveillance indicators: testing demand and positivity. Using simulation, we assess to what extent the use of multiplex PCR tests on a subsample of symptomatic individuals can help correct of the observed SARS-CoV-2 percent positivity and improve surveillance quality. Results We find that a non-SARS-CoV-2 epidemic strongly increases SARS-CoV-2 daily testing demand and artificially reduces the observed SARS-CoV-2 percent positivity for the duration of the outbreak. We estimate that performing one multiplex test for every 1,000 COVID-19 tests on symptomatic individuals could be sufficient to maintain surveillance of other respiratory viruses in the population and correct the observed SARS-CoV-2 percent positivity. Conclusions This study highlights that co-circulating respiratory viruses can distort SARS-CoV-2 surveillance. Correction of the positivity rate can be achieved by using multiplex PCR tests, and a low number of samples is sufficient to avoid bias in SARS-CoV-2 surveillance.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 960-960
Author(s):  
Sara Luck ◽  
Katie Aubrecht

Abstract Nursing home facilities are responsible for providing care for some of the most vulnerable groups in society, including the elderly and those with chronic medical conditions. In times of crisis, such as COVID-19 or other pandemics, the delivery of ‘regular’ care can be significantly impacted. In relation to COVID-19, there is an insufficient supply of personal protective equipment (PPE) to care for residents, as PPE not only protects care staff but also residents. Nursing homes across the United States and Canada have also taken protective measures to maximize the safety of residents by banning visitors, stopping all group activities, and increasing infection control measures. This presentation shares a research protocol and early findings from a study investigating the impact of COVID-19 on quality of care in residential long-term care (LTC) in the Canadian province of New Brunswick. This study used a qualitative description design to explore what contributes to quality of care for residents living in long-term care, and how this could change in times of crisis from the perspective of long-term care staff. Interviews were conducted with a broad range of staff at one LTC home. A semi-structured interview guide and approach to thematic analysis was framed by a social ecological perspective, making it possible to include the individual and proximal social influences as well as community, organizations, and policy influencers. Insights gained will improve the understanding of quality of care, as well as potential barriers and facilitators to care during times of crisis.


2007 ◽  
Vol 136 (8) ◽  
pp. 1035-1045 ◽  
Author(s):  
S.-C. CHEN ◽  
C.-M. LIAO

SUMMARYWe coupled the Wells–Riley equation and the susceptible–exposed–infected–recovery (SEIR) model to quantify the impact of the combination of indoor air-based control measures of enhanced ventilation and respiratory masking in containing pandemic influenza within an elementary school. We integrated indoor environmental factors of a real elementary school and aetiological characteristics of influenza to estimate the age-specific risk of infection (P) and basic reproduction number (R0). We combined the enhanced ventilation rates of 0·5, 1, 1·5, and 2/h and respiratory masking with 60%, 70%, 80%, and 95% efficacies, respectively, to predict the reducing level of R0. We also took into account the critical vaccination coverage rate among schoolchildren. Age-specific P and R0 were estimated respectively to be 0·29 and 16·90; 0·56 and 16·11; 0·59 and 12·88; 0·64 and 16·09; and 0·07 and 2·80 for five age groups 4–6, 7–8, 9–10, 11–12, and 25–45 years, indicating pre-schoolchildren have the highest transmission potential. We conclude that our integrated approach, employing the mechanism of transmission of indoor respiratory infection, population-dynamic transmission model, and the impact of infectious control programmes, is a powerful tool for risk profiling prediction of pandemic influenza among schoolchildren.


2005 ◽  
Vol 26 (11) ◽  
pp. 1573-1601 ◽  
Author(s):  
Julia Balogun ◽  
Gerry Johnson

The tendency for intended strategies to lead to unintended consequences is well documented. This longitudinal, real-time analysis of planned change implementation provides an explanation for this phenomenon. We focus on the social processes of interaction between middle managers as change recipients as they try to make sense of the change interventions. We show the extent to which lateral, informal processes of inter-recipient sensemaking contribute to both intended and unintended change outcomes, and therefore the unpredictable, emergent nature of strategic change. The findings raise the issue of the extent to which it is possible to manage evolving recipient interpretations during change implementation.


2019 ◽  
Vol 147 ◽  
Author(s):  
Jessica Y. Wong ◽  
Edward Goldstein ◽  
Vicky J. Fang ◽  
Benjamin J. Cowling ◽  
Peng Wu

Abstract Statistical models are commonly employed in the estimation of influenza-associated excess mortality that, due to various reasons, is often underestimated by laboratory-confirmed influenza deaths reported by healthcare facilities. However, methodology for timely and reliable estimation of that impact remains limited because of the delay in mortality data reporting. We explored real-time estimation of influenza-associated excess mortality by types/subtypes in each year between 2012 and 2018 in Hong Kong using linear regression models fitted to historical mortality and influenza surveillance data. We could predict that during the winter of 2017/2018, there were ~634 (95% confidence interval (CI): (190, 1033)) influenza-associated excess all-cause deaths in Hong Kong in population ⩾18 years, compared to 259 reported laboratory-confirmed deaths. We estimated that influenza was associated with substantial excess deaths in older adults, suggesting the implementation of control measures, such as administration of antivirals and vaccination, in that age group. The approach that we developed appears to provide robust real-time estimates of the impact of influenza circulation and complement surveillance data on laboratory-confirmed deaths. These results improve our understanding of the impact of influenza epidemics and provide a practical approach for a timely estimation of the mortality burden of influenza circulation during an ongoing epidemic.


2017 ◽  
Vol 103 (4) ◽  
pp. 346-351 ◽  
Author(s):  
Laurel Teoh ◽  
Ian M Mackay ◽  
Peter P Van Asperen ◽  
Jason P Acworth ◽  
Mark Hurwitz ◽  
...  

ObjectivesTo describe the point prevalence of respiratory viruses/atypical bacteria using PCR and evaluate the impact of respiratory viruses/atypical bacteria and atopy on acute severity and clinical recovery in children with hospitalised and non-hospitalised asthma exacerbations.DesignThis was a prospective study performed during 2009–2011.SettingThe study was performed in the emergency departments of two hospitals.Patients244 children aged 2–16 years presenting with acute asthma to the emergency departments were recruited. A nasopharyngeal aspirate and allergen skin prick test were performed.Main outcome measuresThe outcomes were divided into (1) acute severity outcomes (Australian National Asthma Council assessment, hospitalisation, Functional Severity Scale, Acute Asthma Score, asthma quality of life questionnaires for parents (PACQLQ) on presentation, asthma diary scores (ADS) on presentation and length of hospitalisation) and (2) recovery outcomes (PACQLQ for 21 days, ADS for 14 days and representation for asthma for 21 days).ResultsPCR for viruses/atypical bacteria was positive in 81.7% of children (75.1% human rhinovirus, codetection in 14.2%). Mycoplasma pneumoniae and Chlamydophila pneumoniae were rarely detected. The presence of micro-organisms had little impact on acute asthma or recovery outcomes. Children with atopy were significantly more likely to relapse and represent for medical care by day 14 (OR 1.11, 95% CI 1.00 to 1.23).ConclusionsThe presence of any viruses is associated with asthma exacerbations but does not appear to influence asthma recovery. In contrast, atopy is associated with asthma relapse. M. pneumoniae and C. pneumoniae are rare triggers of acute asthma in young children.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kai Fan ◽  
Xiaoye Gu

In the special sports camera, there are subframes. A lens is composed of multiple frames. It will be unclear if a frame is cut out. The definition of video screenshots lies in the quality of video. To get clear screenshots, we need to find clear video. The purpose of this paper is to analyze and evaluate the quality of sports video images. Through the semantic analysis and program design of video using computer language, the video images are matched with the data model constructed by research, and the real-time analysis of sports video images is formed, so as to achieve the real-time analysis effect of sports techniques and tactics. In view of the defects of rough image segmentation and high spatial distortion rate in current sports video image evaluation methods, this paper proposes a sports video image evaluation method based on BP neural network perception. The results show that the optimized algorithm can overcome the slow convergence of weights of traditional algorithm and the oscillation in error convergence of variable step size algorithm. The optimized algorithm will significantly reduce the learning error of neural network and the overall error of network quality classification and greatly improve the accuracy of evaluation. Sanda motion video image quality evaluation method based on BP (back propagation) neural network perception has high spatial accuracy, good noise iteration performance, and low spatial distortion rate, so it can accurately evaluate Sanda motion video image quality.


Author(s):  
Nicholas G. Davies ◽  
Adam J. Kucharski ◽  
Rosalind M. Eggo ◽  
Amy Gimma ◽  
W. John Edmunds ◽  
...  

AbstractBackgroundNon-pharmaceutical interventions have been implemented to reduce transmission of SARS-CoV-2 in the UK. Projecting the size of an unmitigated epidemic and the potential effect of different control measures has been critical to support evidence-based policymaking during the early stages of the epidemic.MethodsWe used a stochastic age-structured transmission model to explore a range of intervention scenarios, including the introduction of school closures, social distancing, shielding of elderly groups, self-isolation of symptomatic cases, and extreme “lockdown”-type restrictions. We simulated different durations of interventions and triggers for introduction, as well as combinations of interventions. For each scenario, we projected estimated new cases over time, patients requiring inpatient and critical care (intensive care unit, ICU) treatment, and deaths.FindingsWe found that mitigation measures aimed at reducing transmission would likely have decreased the reproduction number, but not sufficiently to prevent ICU demand from exceeding NHS availability. To keep ICU bed demand below capacity in the model, more extreme restrictions were necessary. In a scenario where “lockdown”-type interventions were put in place to reduce transmission, these interventions would need to be in place for a large proportion of the coming year in order to prevent healthcare demand exceeding availability.InterpretationThe characteristics of SARS-CoV-2 mean that extreme measures are likely required to bring the epidemic under control and to prevent very large numbers of deaths and an excess of demand on hospital beds, especially those in ICUs.Research in ContextEvidence before this studyAs countries have moved from early containment efforts to planning for the introduction of large-scale non-pharmaceutical interventions to control COVID-19 outbreaks, epidemic modelling studies have explored the potential for extensive social distancing measures to curb transmission. However, it remains unclear how different combinations of interventions, timings, and triggers for the introduction and lifting of control measures may affect the impact of the epidemic on health services, and what the range of uncertainty associated with these estimates would be.Added value of this studyUsing a stochastic, age-structured epidemic model, we explored how eight different intervention scenarios could influence the number of new cases and deaths, as well as intensive care beds required over the projected course of the epidemic. We also assessed the potential impact of local versus national targeting of interventions, reduction in leisure events, impact of increased childcare by grandparents, and timing of triggers for different control measures. We simulated multiple realisations for each scenario to reflect uncertainty in possible epidemic trajectories.Implications of all the available evidenceOur results support early modelling findings, and subsequent empirical observations, that in the absence of control measures, a COVID-19 epidemic could quickly overwhelm a healthcare system. We found that even a combination of moderate interventions – such as school closures, shielding of older groups and self-isolation – would be unlikely to prevent an epidemic that would far exceed available ICU capacity in the UK. Intermittent periods of more intensive lockdown-type measures are predicted to be effective for preventing the healthcare system from being overwhelmed.


Author(s):  
Christian L Althaus ◽  
Nicola Low ◽  
Emmanuel O. Musa ◽  
Faisal Shuaib ◽  
Sandro Gsteiger

International air travel has already spread Ebola virus disease (EVD) to major cities as part of the unprecedented epidemic that started in Guinea in December 2013. An infected airline passenger arrived in Nigeria on July 20, 2014 and caused an outbreak in Lagos and then Port Harcourt. After a total of 20 reported cases, including 8 deaths, Nigeria was declared EVD free on October 20, 2014. We quantified the impact of early control measures in preventing further spread of EVD in Nigeria and calculated the risk that a single undetected case will cause a new outbreak. We fitted an EVD transmission model to data from the outbreak in Nigeria and estimated the individual reproduction number of the index case at 9.0 (95% confidence interval [CI]: 5.2-15.6). We also found that the net reproduction number fell below unity 15 days (95% CI: 11-21 days) after the arrival of the index case. Hence, our study illustrates the time window for successful containment of EVD outbreaks caused by infected air travelers.


Author(s):  
Pavel Tšukrejev ◽  
Kaarel Kruuser ◽  
Georgy Gorbachev ◽  
Kristo Karjust ◽  
Jüri Majak

One of the most important steps during manufacturing of solar modules is lamination. This paper focuses on monitoring of behavior of used encapsulant Ethylene/Vinyl-Acetate (EVA) and impact on overall quality of module during lamination. Monitoring is performed by employing external thermocouple sensor inside the lamination chamber as well as by. Real-time analysis of the results helps to predict the quality of final product in terms of ensuring lamination quality in real time and provides possibility to tune the process during manufacturing cycle to achieve the best result of encapsulant cross-linking.


Sign in / Sign up

Export Citation Format

Share Document