scholarly journals Dynamically expressed ELAV is required for learning and memory in bees

2021 ◽  
Author(s):  
Pinar Ustaoglu ◽  
Jatinder Kaur Gill ◽  
Nicolas Doubovetzky ◽  
Irmgard Haussmann ◽  
Jean-Marc Devaud ◽  
...  

Changes in gene expression are a hallmark of learning and memory consolidation. Little is known about how alternative mRNA processing, particularly abundant in neuron-specific genes, contributes to these processes. Prototype RNA binding proteins of the neuronally expressed ELAV/Hu family are candidates for roles in learning and memory, but their capacity to cross-regulate and take over each others functions complicate substantiation of such links. Therefore, we focused on honey bees, which have only a single elav family gene. We find that honey bee elav contains a microexon, which is evolutionary conserved between invertebrates and humans. RNAi knockdown of elav demonstrates that ELAV is required for learning and memory in bees. Indicative of a role as immediate early gene, ELAV is dynamically expressed with altered alternative splicing and subcellular localization in mushroom bodies, but not in other brain parts. Expression and alternative splicing of elav change during memory consolidation illustrating an alternative mRNA processing program as part of a local gene expression response underlying memory formation. Although the honey bee genome encodes only a single elav gene, functional diversification is achieved by alternative splicing.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Pinar Ustaoglu ◽  
Jatinder Kaur Gill ◽  
Nicolas Doubovetzky ◽  
Irmgard U. Haussmann ◽  
Thomas C. Dix ◽  
...  

AbstractChanges in gene expression are a hallmark of learning and memory consolidation. Little is known about how alternative mRNA processing, particularly abundant in neuron-specific genes, contributes to these processes. Prototype RNA binding proteins of the neuronally expressed ELAV/Hu family are candidates for roles in learning and memory, but their capacity to cross-regulate and take over each other’s functions complicate substantiation of such links. Honey bees Apis mellifera have only one elav/Hu family gene elavl2, that has functionally diversified by increasing alternative splicing including an evolutionary conserved microexon. RNAi knockdown demonstrates that ELAVL2 is required for learning and memory in bees. ELAVL2 is dynamically expressed with altered alternative splicing and subcellular localization in mushroom bodies, but not in other brain regions. Expression and alternative splicing of elavl2 change during memory consolidation illustrating an alternative mRNA processing program as part of a local gene expression response underlying memory consolidation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lizhen Chen ◽  
Zhijie Liu ◽  
Bing Zhou ◽  
Chaoliang Wei ◽  
Yu Zhou ◽  
...  

Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension.


2020 ◽  
Vol 21 (24) ◽  
pp. 9424
Author(s):  
Juan F. García-Moreno ◽  
Luísa Romão

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a cellular post-transcriptional process that generates protein isoform diversity. Nonsense-mediated RNA decay (NMD) is an mRNA surveillance pathway that recognizes and selectively degrades transcripts containing premature translation-termination codons (PTCs), thereby preventing the production of truncated proteins. Nevertheless, NMD also fine-tunes the gene expression of physiological mRNAs encoding full-length proteins. Interestingly, around one third of all AS events results in PTC-containing transcripts that undergo NMD. Numerous studies have reported a coordinated action between AS and NMD, in order to regulate the expression of several genes, especially those coding for RNA-binding proteins (RBPs). This coupling of AS to NMD (AS-NMD) is considered a gene expression tool that controls the ratio of productive to unproductive mRNA isoforms, ultimately degrading PTC-containing non-functional mRNAs. In this review, we focus on the mechanisms underlying AS-NMD, and how this regulatory process is able to control the homeostatic expression of numerous RBPs, including splicing factors, through auto- and cross-regulatory feedback loops. Furthermore, we discuss the importance of AS-NMD in the regulation of biological processes, such as cell differentiation. Finally, we analyze interesting recent data on the relevance of AS-NMD to human health, covering its potential roles in cancer and other disorders.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Chiara Naro ◽  
Claudio Sette

Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large macromolecular complex, the spliceosome, whose activity needs a fine regulation exerted bycis-acting RNA sequence elements andtrans-acting RNA binding proteins (RBP). The activity of both core spliceosomal components and accessory splicing factors is modulated by their reversible phosphorylation. The kinases and phosphatases involved in these posttranslational modifications significantly contribute to AS regulation and to its integration in the complex regulative network that controls gene expression in eukaryotic cells. Herein, we will review the major canonical and noncanonical splicing factor kinases and phosphatases, focusing on those whose activity has been implicated in the aberrant splicing events that characterize neoplastic transformation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Heiyeun Koo ◽  
Jae Yeon Hwang ◽  
Sungbo Jung ◽  
Hyeyoung Park ◽  
Jinwoong Bok ◽  
...  

Alternative splicing (AS) refers to the production of multiple mRNA isoforms from a single gene due to alternative selection of exons or splice sites during pre-mRNA splicing. It is a primary mechanism of gene regulation in higher eukaryotes and significantly expands the functional complexity of eukaryotic organisms, contributing to animal development and disease. Recent studies have shown that AS also influences functional diversity by affecting the transcriptomic and proteomic profiles in a position-dependent manner in a single organ. The peripheral hearing organ, the cochlea, is organized to detect sounds at different frequencies depending on its location along the longitudinal axis. This unique functional configuration, the tonotopy, is known to be facilitated by differential gene expression along the cochlear duct. We profiled transcriptome-wide gene expression and AS changes that occur within the different positions of chick cochlea. These analyses revealed distinct gene expression profiles and AS, including a splicing program that is unique to tonotopy. Changes in the expression of splicing factors PTBP3, ESRP1, and ESRP2 were demonstrated to contribute to position-specific AS. RNA-binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS at different positions by different RNA-binding proteins. These data, along with gene ontology (GO) analysis, represent a comprehensive analysis of the dynamic regulation of AS at different positions in chick cochlea.


2020 ◽  
Author(s):  
Anastasios A. Mirisis ◽  
Ashley M. Kopec ◽  
Thomas J. Carew

AbstractLong-term memory (LTM) formation is a critical survival process by which an animal retains information about prior experiences in order to guide future behavior. In the experimentally advantageous marine mollusk Aplysia, LTM for sensitization can be induced by the presentation of two aversive shocks to the animal’s tail. Each of these training trials recruits distinct growth factor signaling systems that promote LTM formation. Specifically, whereas intact TrkB signaling during Trial 1 promotes an initial and transient increase of the immediate early gene apc/ebp mRNA, a prolonged increase in apc/ebp gene expression required for LTM formation requires the addition of TGFβ signaling during Trial 2. Here we explored the molecular mechanisms by which Trial 2 achieves the essential prolonged gene expression of apc/ebp. We find that this prolonged gene expression is not dependent on de novo transcription, but that apc/ebp mRNA synthesized by Trial 1 is post-transcriptionally stabilized by interacting with the RNA-binding protein ApELAV. This interaction is promoted by p38 MAPK activation initiated by TGFβ. We further demonstrate that blocking the interaction of ApELAV with its target mRNA during Trial 2 blocks both the prolonged increase in apc/ebp gene expression and the behavioral induction of LTM. Collectively, our findings elucidate both when and how ELAV proteins are recruited for the stabilization of mRNA in LTM formation.Significance StatementIn the present paper we significantly extend the general field of molecular processing in LTM by describing a novel form of pre-translational processing required for LTM which relies on the stabilization of a newly synthesized mRNA by a unique class of RNA binding proteins (ELAVs). In the broad field of molecular mechanisms of transcription-dependent LTM, there are now compelling data showing that important processing can occur after transcription of a gene, but before translation of the message into protein. Although the potential importance of ELAV proteins in LTM formation has previously been reported, to date there has been no mechanistic insight into the specific actions of ELAV proteins in stabilization of mRNAs known to be critical for LTM. Our new findings thus complement and extend this literature by demonstrating when and how this post-transcriptional gene regulation is mediated in the induction of LTM.


2021 ◽  
Author(s):  
Feiyan Zhao ◽  
Qin Wang ◽  
Tong Chen ◽  
Xuehan Zhao ◽  
Zhimin Xin ◽  
...  

Abstract Genome-wide interactions between RNA-binding proteins (RBPs) and RNA targets account for an important portion of post-transcriptional regulation. IGF2BP2 is associated with type 2 diabetes (T2D) and obesity and reportedly functions as an RBP that regulates a series of target genes by binding RNA transcripts. In this study, we detected the differential expression of IGF2BP2 in granulosa cells from women with ovarian disorders and performed RNA-seq and RIP-seq experiments in immortalized human granulosa cells (KGN cells) to evaluate global transcript levels and alternative splicing on KGN cells overexpressing IGF2BP2 versus controls. Our results show that IGF2BP2 preferentially binds to the 3’and 5’UTRs of mRNAs and enriches target gene expression in KGN cells. Notably, besides the conventional GGAC motif, we found a significant enrichment of a new GAAG motif within IGF2BP2-binding regions. We demonstrate that IGF2BP2 is involved in transcription regulation and alternative splicing in genes associated with follicular development. Furthermore, IGF2BP2 partly influences the expression levels of some of these alternatively spliced genes, including MBD3 and FN1, which may lead to ovarian endocrine disorders. In conclusion, we provide a transcriptome-wide analysis that demonstrates the role played by IGF2BP2 in the regulation of gene expression, transcription and alternative splicing of a number of genes involved in the pathogenesis of ovarian endocrine diseases.


2019 ◽  
Vol 19 (4) ◽  
pp. 255-263 ◽  
Author(s):  
Yuangang Wu ◽  
Xiaoxi Lu ◽  
Bin Shen ◽  
Yi Zeng

Background: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.


2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


Sign in / Sign up

Export Citation Format

Share Document