scholarly journals Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research

2021 ◽  
Author(s):  
Chedly Kastally ◽  
Alina K. Niskanen ◽  
Annika Perry ◽  
Sonja T. Kujala ◽  
Komlan Avia ◽  
...  

Scots pine (Pinus sylvestris) is the most widespread coniferous tree in the boreal forests of Eurasia and has major economic and ecological importance. However, its large and repetitive genome presents a challenge for conducting genome-wide analyses such as association studies and genomic selection. We present a new 50K SNP genotyping array for Scots pine research, breeding programs, and other applications. To select the SNP set, we first genotyped 480 Scots pine samples on a 407 540 SNP screening array, and identified 47 712 high-quality SNPs for the final array (called 'PiSy50k'). Here, we provide details of the design and testing, as well as allele frequency estimates from the discovery panel, functional annotation, tissue-specific expression patterns, and expression level information for the SNPs or corresponding genes, when available. We validated the performance of the PiSy50k array using samples from breeding populations from Finland and Scotland. Overall, 39 678 (83.2%) SNPs showed low error rates (mean = 0.92%). Relatedness estimates based on array genotypes were consistent with the expected pedigrees, and the amount of Mendelian error was negligible. In addition, array genotypes successfully discriminate Scots pine populations from different geographic origins. The PiSy50k array will be a valuable tool for future genetic studies and forestry applications.

2020 ◽  
Author(s):  
Ruslan M. Deviatiiarov ◽  
Anna Gams ◽  
Roman Syunyaev ◽  
Tatiana V. Tatarinova ◽  
Oleg Gusev ◽  
...  

AbstractGenome regulatory elements play a critical role during cardiac development and maintenance of normal physiological homeostasis, and genome-wide association studies identified a large number of SNPs associated with cardiovascular diseases localized in intergenic zones. We used cap analysis of gene expression (CAGE) to identify transcription start sites (TSS) with one nucleotide resolution that effectively maps genome regulatory elements in a representative collection of human heart tissues. Here we present a comprehensive and fully annotated CAGE atlas of human promoters and enhancers from four chambers of the non-diseased human donor hearts, including both atria and ventricles. We have identified 10,528 novel regulatory elements, where 2,750 are classified as TSS and 4,258 novel enhancers, which were validated with ChIP-seq libraries and motif enrichment analysis. We found that heart-region specific expression patterns are primarily based on the alternative promoter and specific enhancer activity. Our study significantly increased evidence of the association of regulatory elements-located variants with heart morphology and pathologies. The precise location of cardiac disease-related SNPs within the regulatory regions and their correlation with a specific cell type offers a new understanding of genetic heart diseases.


2020 ◽  
Author(s):  
Ruslan Deviatiiarov ◽  
Anna Gams ◽  
Roman Syunyaev ◽  
Tatiana Tatarinova ◽  
Oleg Gusev ◽  
...  

Abstract Genome regulatory elements play a critical role during cardiac development and maintenance of normal physiological homeostasis, and genome-wide association studies identified a large number of SNPs associated with cardiovascular diseases localized in intergenic zones. We used cap analysis of gene expression (CAGE) to identify transcription start sites (TSS) with one nucleotide resolution that effectively maps genome regulatory elements in a representative collection of human heart tissues. Here we present a comprehensive and fully annotated CAGE atlas of human promoters and enhancers from four chambers of the non-diseased human donor hearts, including both atria and ventricles. We have identified 10,528 novel regulatory elements, where 2,750 are classified as TSS and 4,258 novel enhancers, which were validated with ChIP-seq libraries and motif enrichment analysis. We found that heart-region specific expression patterns are primarily based on the alternative promoter and specific enhancer activity. Our study significantly increased evidence of the association of regulatory elements-located variants with heart morphology and pathologies. The precise location of cardiac disease-related SNPs within the regulatory regions and their correlation with a specific cell type offers a new understanding of genetic heart diseases.


2013 ◽  
Author(s):  
AL Bookout ◽  
Y Jeong ◽  
M Downes ◽  
RT Yu ◽  
RM Evans ◽  
...  

2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leyla A. Erozenci ◽  
Sander R. Piersma ◽  
Thang V. Pham ◽  
Irene V. Bijnsdorp ◽  
Connie R. Jimenez

AbstractThe protein content of urinary extracellular vesicles (EVs) is considered to be an attractive non-invasive biomarker source. However, little is known about the consistency and variability of urinary EV proteins within and between individuals over a longer time-period. Here, we evaluated the stability of the urinary EV proteomes of 8 healthy individuals at 9 timepoints over 6 months using data-independent-acquisition mass spectrometry. The 1802 identified proteins had a high correlation amongst all samples, with 40% of the proteome detected in every sample and 90% detected in more than 1 individual at all timepoints. Unsupervised analysis of top 10% most variable proteins yielded person-specific profiles. The core EV-protein-interaction network of 516 proteins detected in all measured samples revealed sub-clusters involved in the biological processes of G-protein signaling, cytoskeletal transport, cellular energy metabolism and immunity. Furthermore, gender-specific expression patterns were detected in the urinary EV proteome. Our findings indicate that the urinary EV proteome is stable in longitudinal samples of healthy subjects over a prolonged time-period, further underscoring its potential for reliable non-invasive diagnostic/prognostic biomarkers.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 437
Author(s):  
Ting Gong ◽  
Weiyong Wang ◽  
Houqiang Xu ◽  
Yi Yang ◽  
Xiang Chen ◽  
...  

Testicular expression of taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, has been implicated in spermatogenesis and steroidogenesis in mice. We explored the role of testicular T1R3 in porcine postnatal development using the Congjiang Xiang pig, a rare Chinese miniature pig breed. Based on testicular weights, morphology, and testosterone levels, four key developmental stages were identified in the pig at postnatal days 15–180 (prepuberty: 30 day; early puberty: 60 day; late puberty: 90 day; sexual maturity: 120 day). During development, testicular T1R3 exhibited stage-dependent and cell-specific expression patterns. In particular, T1R3 levels increased significantly from prepuberty to puberty (p < 0.05), and expression remained high until sexual maturity (p < 0.05), similar to results for phospholipase Cβ2 (PLCβ2). The strong expressions of T1R3/PLCβ2 were observed at the cytoplasm of elongating/elongated spermatids and Leydig cells. In the eight-stage cycle of the seminiferous epithelium in pigs, T1R3/PLCβ2 levels were higher in the spermatogenic epithelium at stages II–VI than at the other stages, and the strong expressions were detected in elongating/elongated spermatids and residual bodies. The message RNA (mRNA) levels of taste receptor type 1 subunit 1 (T1R1) in the testis showed a similar trend to levels of T1R3. These data indicate a possible role of T1R3 in the regulation of spermatid differentiation and Leydig cell function.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1465
Author(s):  
Ramon de Koning ◽  
Raphaël Kiekens ◽  
Mary Esther Muyoka Toili ◽  
Geert Angenon

Raffinose family oligosaccharides (RFO) play an important role in plants but are also considered to be antinutritional factors. A profound understanding of the galactinol and RFO biosynthetic gene families and the expression patterns of the individual genes is a prerequisite for the sustainable reduction of the RFO content in the seeds, without compromising normal plant development and functioning. In this paper, an overview of the annotation and genetic structure of all galactinol- and RFO biosynthesis genes is given for soybean and common bean. In common bean, three galactinol synthase genes, two raffinose synthase genes and one stachyose synthase gene were identified for the first time. To discover the expression patterns of these genes in different tissues, two expression atlases have been created through re-analysis of publicly available RNA-seq data. De novo expression analysis through an RNA-seq study during seed development of three varieties of common bean gave more insight into the expression patterns of these genes during the seed development. The results of the expression analysis suggest that different classes of galactinol- and RFO synthase genes have tissue-specific expression patterns in soybean and common bean. With the obtained knowledge, important galactinol- and RFO synthase genes that specifically play a key role in the accumulation of RFOs in the seeds are identified. These candidate genes may play a pivotal role in reducing the RFO content in the seeds of important legumes which could improve the nutritional quality of these beans and would solve the discomforts associated with their consumption.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Asia Mendelevich ◽  
Svetlana Vinogradova ◽  
Saumya Gupta ◽  
Andrey A. Mironov ◽  
Shamil R. Sunyaev ◽  
...  

AbstractA sensitive approach to quantitative analysis of transcriptional regulation in diploid organisms is analysis of allelic imbalance (AI) in RNA sequencing (RNA-seq) data. A near-universal practice in such studies is to prepare and sequence only one library per RNA sample. We present theoretical and experimental evidence that data from a single RNA-seq library is insufficient for reliable quantification of the contribution of technical noise to the observed AI signal; consequently, reliance on one-replicate experimental design can lead to unaccounted-for variation in error rates in allele-specific analysis. We develop a computational approach, Qllelic, that accurately accounts for technical noise by making use of replicate RNA-seq libraries. Testing on new and existing datasets shows that application of Qllelic greatly decreases false positive rate in allele-specific analysis while conserving appropriate signal, and thus greatly improves reproducibility of AI estimates. We explore sources of technical overdispersion in observed AI signal and conclude by discussing design of RNA-seq studies addressing two biologically important questions: quantification of transcriptome-wide AI in one sample, and differential analysis of allele-specific expression between samples.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1480
Author(s):  
Hiresh Ayoubian ◽  
Joana Heinzelmann ◽  
Sebastian Hölters ◽  
Oybek Khalmurzaev ◽  
Alexey Pryalukhin ◽  
...  

Although microRNAs are described as promising biomarkers in many tumor types, little is known about their role in PSCC. Thus, we attempted to identify miRNAs involved in tumor development and metastasis in distinct histological subtypes considering the impact of HPV infection. In a first step, microarray analyses were performed on RNA from formalin-fixed, paraffin-embedded tumor (22), and normal (8) tissue samples. Microarray data were validated for selected miRNAs by qRT-PCR on an enlarged cohort, including 27 tumor and 18 normal tissues. We found 876 significantly differentially expressed miRNAs (p ≤ 0.01) between HPV-positive and HPV-negative tumor samples by microarray analysis. Although no significant differences were detected between normal and tumor tissue in the whole cohort, specific expression patterns occurred in distinct histological subtypes, such as HPV-negative usual PSCC (95 differentially expressed miRNAs, p ≤ 0.05) and HPV-positive basaloid/warty subtypes (247 differentially expressed miRNAs, p ≤ 0.05). Selected miRNAs were confirmed by qRT-PCR. Furthermore, microarray data revealed 118 miRNAs (p ≤ 0.01) that were significantly differentially expressed in metastatic versus non-metastatic usual PSCC. The lower expression levels for miR-137 and miR-328-3p in metastatic usual PSCC were validated by qRT-PCR. The results of this study confirmed that specific miRNAs could serve as potential diagnostic and prognostic markers in single PSCC subtypes and are associated with HPV-dependent pathways.


2021 ◽  
Vol 288 ◽  
pp. 110218
Author(s):  
Ruijie Hao ◽  
Shuting Yang ◽  
Zhongqiang Zhang ◽  
Yajing Zhang ◽  
Jun Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document